Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generating circularly polarized luminescence from clusterization‐triggered emission using solid phase molecular self-assembly

Abstract

Purely-organic clusterization‐triggered emission (CTE) has displayed promising abilities in bioimaging, chemical sensing, and multicolor luminescence. However, it remains absent in the field of circularly polarized luminescence (CPL) due to the difficulties in well-aligning the nonconventional luminogens. We report a case of CPL generated with CTE using the solid phase molecular self-assembly (SPMSA) of poly-L-lysine (PLL) and oleate ion (OL), that is, the macroscopic CPL supramolecular film self-assembled by the electrostatic complex of PLL/OL under mechanical pressure. Well-defined interface charge distribution, given by lamellar mesophases of OL ions, forces the PLL chains to fold regularly as a requirement of optimal electrostatic interactions. Further facilitated by hydrogen bonding, the through-space conjugation (TSC) of orderly aligned electron-rich O and N atoms leads to CTE-based CPL, which is capable of transferring energy to an acceptor via a Förster resonance energy transfer (FRET) process, making it possible to develop environmentally friendly and economic CPL from sustainable and renewable materials.

Introduction

It has long been recognized that the generation of fluorescence requires specific atomic or molecular structures with delocalizable electrons1,2,3. In general, these structural criteria are found in broad categories of rigid and conjugated aromatics, extended π systems, or unsaturated heterocyclic systems containing high multiplicities of heteroatoms with unoccupied p-orbitals4,5. However, recently a large number of molecules without conjugated groups were found to give considerable emission4,6,7,8. These molecules generally contain abundant electron-rich atoms, such as N, O, S, P, and Si. Tang and Yuan et al. revealed that when these atoms are clustered together, the extended delocalization of the lone pair electrons will occur through-space conjugation (TSC), which results in conformation rigidification and clusterization‐triggered emission (CTE)9,10. Since conjugated groups are not required, CTE, with the advantages of facile synthesis, good water solubility, low biological toxicity, etc.9,11,12,13,14, has become the potent alternative for the conventional emission in many fields, such as color-tunable light-emitting15,16,17,18,19,20, room-temperature phosphorescence11,12,13,14,21,22,23,24,25,26, as well as bioimaging and chemical sensing13,22,23,24,27,28,29,30. It would be very promising if CTE is able to replace traditional emissions in an even vast number of fields.

Circularly polarized luminescence (CPL) is attracting intensive interest in recent years, owing to its significant importance in photoelectronics31,32, nonlinear optics33,34, three-dimensional display35, biological probes36,37,38, and data recording39,40. Up to date, materials displaying CPL ability are mostly based on conventional organic emitters41,42,43, aggregation-induced emission luminogens44, chiral lanthanide complexes45,46, or clustered metal atoms47,48,49,50,51,52. A crucial requirement for the occurrence of CPL is the alignment of chromophores in chiral environment41,53,54, which is still an insurmountable challenge in a CTE system55,56,57 due to the heterogeneity of clusteroluminogens9,10. The absence of purely-organic CTE from the field of CPL makes it difficult to create biocompatible CPL materials economically.

Herein, we report a case of CPL generated from purely organic CTE using the strategy of solid-phase molecular self-assembly (SPMSA) proposed by us58,59,60. In this strategy, a precipitate composed of a pair of oppositely charged polyelectrolyte and amphiphile was first generated in water, and further subjected to mild mechanical pressure to facilitate the merging of nanometer-sized hydrophobic domains into mesophases. As such, a free-standing supramolecular film came into formation owing to the bridging of these mesophases with polyelectrolyte chains. Considering the hydrophobic mesophases are very alike giant 2D rigid supramolecular polymers with well-defined interface charge distribution, we hypothesize that this unique structural feature is able to induce well-defined folding of polyelectrolytes composed of chiral units, thus leads to CTE-based CPL.

For that to occur, cationic α-poly-l-lysine (PLL) and oleate ion (OL) were chosen to build supramolecular films through the strategy of SPMSA, since amino acids are well-known chiral molecules and poly (amino acids) have been verified to display CTE14,23,24,61,62,63,64. In an aqueous solution, the ionic assembly between PLL and OL results in cross-linked vesicles, where PLL displays characteristic CTE but CPL silent. However, the vesicle networks precipitate out upon centrifugation and transform into planar bilayers after applying a mild mechanical pressure (Fig. 1a). Up to our expectation, PLL folds into a well-defined structure on the interface of the bilayers formed by OLs, which results in the alignment of the clusteroluminogens (O and N atoms) during the process of TSC, as well as the significant CPL due to the expression of chirality of the amino groups in the CTE. Amazingly, through Förster resonance energy transfer (FRET), chirality transfer for the CTE-based CPL would occur, in analogy to conventional CPL. We envision that the current work would open a new paradigm in the study of CTE, making it possible to generate environmentally friendly CPL through an economic pathway.

Fig. 1: Solid phase molecular self-assembly (SPMSA) of α-poly-l-lysine-sodium oleate (PLL-OL).
figure1

a The schematic illustration of the solid phase molecular self-assembly (SPMSA) of PLL-OL. b Turbidity of PLL-OL aqueous suspension at different lysine: oleate (Lys: OL) ratio ([Lys] = 10 mM). c TEM (transmittance electron microscopy) image for the structures formed in the PLL-OL suspension (Lys:OL = 1:1, [OL] = [Lys] = 10 mM). d Emission spectra of PLL-OL aqueous suspension at different excitation wavelengths (Lys:OL = 1:1, [OL] = [Lys] = 50 mM). e The film is obtained by pressing the precipitate. f The photo of the film under daylight (upper) and 365 nm UV light (lower), respectively. g Emission spectra of PLL-OL film at different excitation wavelengths.

Results

SPMSA of PLL-OL

Figure 1a shows the schematic process of the SPMSA with PLL and OL. As a nonaromatic poly (amino acid), PLL displays typical CTE character at pH 6–8, including concentration-dependent emission strength, excitation-dependent emission maximum, and silence in CPL (Supplementary Fig. 1). Transmission electron microscope (TEM) and dynamic light scattering (DLS) study (Supplementary Fig. 2) reveal that the CTE of PLL is originated from the heterogeneous clustering states of PLL chains. The sodium oleate (NaOL) also displays a weak CTE character in water because of the formation of vesicles (Supplementary Fig. 3). The electrostatic complex of PLL and oppositely charged OL in water changes the aggregation state of PLL but has no impact on the CTE nature (Supplementary Fig. 4). As the fraction of NaOL increases, the turbidity of the mixed system increases drastically and becomes whitish as the molar ratio between the lysine unit (Lys) and OL reaches 1:1 (Fig. 1b). Microscopic observation reveals that the addition of NaOL to the PLL solution leads to the formation of vesicles (Fig. 1c), and the vesicles are highly cross-linked as the concentration of NaOL reaches 50 mM (Supplementary Fig. 5). Figure 1d shows the excitation-dependent emission for the 1:1 complexed PLL/NaOL at 50/50 mM. These vesicular clusters are CPL silent (Supplementary Fig. 4c), and their CTE quantum yield (QY) at 365 nm is 4.56%. Lifetime measurements also indicate the presence of excitation-dependent emission species (Supplementary Fig. 4d). Clearly, the formation of vesicles is not helpful to obtain well-defined folding of the PLL chains, and consequently, no CPL can be detected.

The cross-linked vesicles precipitate out after centrifuging under 16100×g. Under mechanical pressures beyond 5 MPa, the fresh precipitates transform into a whitish film, which gradually becomes transparent within 1 h (Fig. 1e). This PLL-OL film is self-supporting and gives blue emission under 365 nm ultraviolet light (Fig. 1f). Elemental analysis (EA) reveals that the ratio of OL to Lys is around 1.4:1 (Supplementary Table 1), and the ratio measured by 1H-NMR is about 1.5:1 (Supplementary Fig. 6), which is close to the EA result. Strikingly, the emission maximum remains constant at 462 nm regardless of the excitation (Fig. 1g), while the emission strength increases with red-shifts of the excitation from 310 to 380 nm. This λex-independent CTE maximum and λex-dependent CTE intensity are in perfect analogy with classical fluorophores’ emission, indicating that the clustering state of the clusteroluminogens (O and N atoms) in PLL becomes homogeneous in the film (Supplementary Fig. 7). In line with this, only one λex-independent average fluorescence lifetime of around 5.76 ns is obtained (Supplementary Fig. 8). Meanwhile, the CTE QY is up to 5.56%, suggesting that the alignment of the O and N atoms is advantageous for the CTE.

The ordered multilayer structure of the PLL-OL film

In order to reveal the molecular packing mode in the PLL-OL film, X-ray diffraction (XRD) measurements were performed. The XRD pattern in Fig. 2a reveals 3 diffractions with a spacing ratio of 1:2:3, corresponding to the (100), (200), and (300) Miller Indices of a 2D lamellar mesostructure65,66. The distance between the bilayers is estimated with the Bragg equation to be 3.43 nm, which is 0.2 nm smaller than twice the extending length of the oleate molecule (Supplementary Fig. 9), indicating the presence of staggered surfactant bilayer domains in the film. Furthermore, the two-dimensional small-angle X-ray scattering (2D SAXS) pattern of the PLL-OL film shows two obvious dark arcs in the equatorial direction (Fig. 2b). The corresponding azimuthal angle (φ) plot features two sharp peaks at φ = 90° and 270°. The calculated orientation order parameter (f) is 0.24 (Fig. 2c), indicating that the OL bilayers are well-aligned in the film. Meanwhile, the TEM image for the cross-section of the PLL-OL film shows light and dark stripes with a spacing of 0.355 nm (Fig. 2d and Supplementary Fig. 10a). Tilted angle experiments indicate that the stripes would become more diffuse as the sample stage tilted from −5° to 10° (Supplementary Fig. 11), indicating these stripes result from the overlaid bilayers. Since the dark stripes are generated from the scattering of the electron beam by electron-rich atoms, it reveals the region of clustered O and N atoms. This indicates that the PLL chains have folded in such a way that all the O and N atoms have aligned in a row, as illustrated in Fig. 2e. It is noticed that the XRD measurements in the wide-angle region reveal a considerable broad peak at 2θ = 20° (Supplementary Fig. 10b). The corresponding spacing is 0.451 nm. This distance can be regarded as consistent with the 0.355 nm separation between the stripes observed under TEM. It is possible that the spacing shrinks under the electron beam in TEM. Figure 2f, g demonstrates the possible chain alignment and the TSC between the N and O atoms in neighboring chains. Owing to the electrostatic interaction between the ammonium positive charges (NH3+) of PLL side groups and the carboxylate negative charges of OL, the aligned PLL chains lay on the interface of the bilayers formed by the oleate, as shown in Fig. 2e.

Fig. 2: The multilayer ordered structure of the PLL-OL film.
figure2

a XRD (X-ray diffraction) patterns, b 2D SAXS (2-dimensional small-angle X-ray scattering) image, c azimuthal angle (φ) plot, and d TEM image of the PLL-OL films. e Schematic illustrations of PLL-OL self-assembled multilayer ordered structure. f Exampled through-space electronic communications among NO and OO units in PLL-OL film. g Exampled intermolecular interaction between PLL chains.

Humidity responsive CTE-based CPL

The well-defined clusterization of PLL chains in the film has resulted in a significant chiroptical signal. Figure 3a shows that an exciton chiral signal featuring Davydov splitting67 occurs at 375 nm, with the first Cotton effect (Δε1, longer wavelength) value being −40 at 425 nm and the second Cotton effect (Δε2, shorter wavelength) being 69 at 325 nm. This chiroptical signal suggests that the negative exciton chirality has been generated, and the amplitude of the couplet A (defined as Δε1 − Δε2) and Δλ (nm) value is 109 and 50, respectively. It is noticed that the circular dichroism (CD) signal is not originated from linear dichroism (LD), since the CD signal remains nearly constant at varying angle measurements, whereas the LD spectrum is angular dependent (Supplementary Fig. 12). In line with the reliable CD, right-handed CPL was observed. As shown in Fig. 3b, the maximum polarized emission wavelength of PLL-OL film is 454 nm, which coincides with the maximum emission of fluorescence (462 nm). The emission dissymmetric factor glum value, which is defined as 2(IL − IR)/(IL + IR), where IL and IR denoting the emission intensities of left-handed CPL (l-CPL) and right-handed CPL (r-CPL) component, respectively68,69, is −0.016 (Supplementary Fig. 13). This value is 10–1000 times higher than those generated from many conventional conjugated organic emitters since they often have a glum of 10−3–10−570,71,72. To the best of our knowledge, this is the first purely organic CTE based CPL that has ever been reported, indicating it is very promising in creating CPL with green and sustainable materials.

Fig. 3: Humidity responsiveness of the clusterization triggered emission (CTE)-based circularly polarized luminescence (CPL).
figure3

a Circular dichroism (CD) and ultraviolet–visible (UV–vis) spectra and b CPL spectra (λex = 330 nm) of PLL-OL film (relative humidity (RH): 11.30%). c Emission dissymmetry factor glum value, d CPL spectra (λex = 330 nm), e XRD patterns, and f FT-IR (Fourier transition-inferred) spectra of the PLL-OL film at different relative humidity.

The CPL intensity reduces significantly with increasing humidity. The glum value decreases rapidly from −0.016 at relative humidity (RH) 11.30% to −0.0033 at RH 32.78% and −0.0018 at RH 52.89% (Fig. 3c). A much higher humidity than 52.89% results in almost complete vanishment of the CPL signal (Fig. 3d), although the fluorescence intensity remains basically unchanged (Supplementary Fig. 14a). The reduction of the CPL is an indication of the reduced supramolecular chirality in the film. Supplementary Fig. 14b reveals that the CD signal decreases drastically as the humidity increases, and disappears completely as the RH exceeds 75.29%.

The XRD pattern in Fig. 3e suggests that the interlayer spacings increase from 3.43 to 4.42 nm as the RH increases from 11.30 to 93.58%. Meanwhile, the second-order diffraction peak is significantly weakened (Inset in Fig. 3e and Supplementary Table 2), manifesting a less ordered long-range stacking of the bilayers in the PLL-OL film. It is noticed that the distance of 4.42 nm is about 0.8 nm larger than twofold the extending length of the OL chains, indicating that the folding state of the PLL chains has changed drastically with increasing humidity. Thermogravimetric analysis (TGA) measurement suggests that the water content in the film increases with humidity. At the RH of 11.30%, the water content in the film is 0.9%, whereas it rises to 23.3% at the high RH of 93.58% (Supplementary Fig. 15 and Supplementary Table 2). This means that the electrostatic interactions between PLL chains and the 2D OL bilayers would be significantly weakened since the dielectric constant of water is 78.5 times larger than that in the vacuum. Fourier transform infrared (FT-IR) spectra manifest that the wavenumber of the N–H vibrational band at 3400 cm−1 increases with humidity (Fig. 3f and Supplementary Table 2), indicating the hydrogen bonds that drive the well-defined folding of the PLL chains have been weakened. (The peak shape under the humidity of 93.58 is indiscernible due to the interference from the broad and strong vibration bands of water at 3200–3600 cm−1.) This means that the PLL chains on their own can hardly fold regularly; the electrostatic interactions between the PLL chains and the OL bilayers are crucial for the forced intramolecular hydrogen bonding.

CTE-based FRET leading to color-tunable CPL

The excitation independent CTE of PLL in the PLL-OL film is very alike conventional emission generated with conjugated molecules. We then move a further step to check whether this CTE is able to undergo FRET as its conjugated counterparts do. Fluorescein sodium (FS) is a common commercial dye. The dilute solution of FS absorbs light within 400–500 nm and emits strong yellow fluorescence near 540 nm. Since the emission of PLL in the film overlaps well with the absorption of FS (Supplementary Fig. 16a), FS was doped as the energy acceptor into the film via coprecipitation. With increasing the doping amount of FS, the blue CTE of PLL decreases gradually, and the yellow emission of FS centered at 555 nm rises up (Fig. 4a, b). The maximum FS emission is observed at the FS doping rate of 0.87 wt%. Further increase of FS results in a decrease of the emission intensity, due to the notorious aggregation-caused quenching73,74. This means that CTE, just like conventional fluorescence, is able to undergo FRET in the presence of an energy acceptor. Supplementary Table 3 shows the changes in fluorescence lifetime, energy transfer efficiency, and absolute QY of the PLL-OLFS film with different FS doping amounts. Before FS doping, the average fluorescence lifetime τD of PLL in the film is approximately 5.68 ns (Supplementary Fig. 16b and Supplementary Table 3). In the case of 0.87 wt% FS doping, the CTE lifetime of PLL in the film decreases to 2.39 ns. Based on these lifetime variations, the efficiency of energy transfer from the folded PLL to FS is estimated to be 57.9%. It is noticed that in this FRET process, the absolute QY of the system has been amplified from 5.56 to 21.9%. This enhanced QY is probably caused by the direct excitation of FS under 365 nm since the absorption of FS extends to this wavelength (Supplementary Fig. 17). Most strikingly, the supramolecular chirality of PLL is also transferred to FS, leading to a broad negative CD signal in the range of 300–500 nm, with a sharp peak occurred at 521 nm (Supplementary Fig. 18). Meanwhile, a bright yellow right-handed CPL was observed at 575 nm (Fig. 4c), and the glum of the maximum emission is −0.018 (Supplementary Fig. 19). This means that FS has complexed efficiently with the folded PLL chains. Based on the above experimental results, a possible energy transfer mechanism is proposed in Fig. 4d. Through the process of FRET, we can obtain color-tunable CPL simply by varying the doping ratio of the acceptors. This greatly broadens the application versatility of CTE, endowing it all the functions of traditional emissions.

Fig. 4: Color tunable CPL through FRET.
figure4

a Photos and b emission spectra (Ex = 365 nm) of PLL-OLFS films with different FS (fluorescein sodium) doping rates under daylight and 365 nm UV light. c CPL spectra (Ex = 342 nm, FS:0.87%) of PLL-OL vesicles and PLL-OLFS film. d Energy transfer and the generation of CPL via the FRET (Förster resonance energy transfer) between the CTE donor of PLL-OL film and the molecular acceptor FS.

Discussion

The chain folding state of PLL is very critical for the generation of CTE-based CPL. Here, the desired chain folding of PLL can be induced by the regularly arranged negative charges on the 2D interface of the OL bilayers. Because of the electrostatic interactions, the quarternized amide groups in the PLL chains are forced to align according to the negative charge density on the 2D interface. Meanwhile, these quarternized amide groups would form hydrogen bonds with other O and N atoms, which are in the form of TSC. In this way, the clusteroluminogens are aligned on the interface of the 2D OL bilayers.

With increasing the environmental humidity, the physically adsorbed water would bond preferably with the ionic groups of PLL and OL58, which weakens the electrostatic interaction between them. As a result, the PLL chains would swell, and the hydrogen bonding between the clusteroluminogens is destroyed. Consequently, the N and O atoms forming TSC could not be aligned anymore, resulting in the vanishing of the supramolecular chirality. Because the electrostatic interaction in the presence of water would always be weakened, it is hard to obtain CPL in aqueous media via electrostatic interactions. That’s why the PLL/OL vesicles do not display CPL. In this sense, SPMSA would be very efficient in generating CTE-based CPL, and the CPL can be manipulated with environmental humidity. Since the acquiring and loss of water via humidity change is reversible, the CTE-based CPL can thus be reversibly switched on and off by controlling the environmental humidity, rendering it an efficient approach to create smart CPL materials.

It should be clarified that the CTE in the current study is not from artifacts aroused from impurities in the used chemicals. As the purity and the sources of both PLL and NaOL were varied, the CTE phenomenon always occurred (Supplementary Fig. 20). The NaOL powders on their own display CTE as well, since the COO groups may pack closely as a result the formation of NaOL bilayers. However, this CTE is excitation wavelength-independent, since the “clustering” state of the COO groups are uniform in the bilayers. In contrast, the CTE of PLL powders from all sources are excitation wavelength-dependent, indicating the clustering states of PLL on its own are heterogeneous (Supplementary Fig. 21). It is the regular charge density on the 2D surface of OL bilayers that forced the PLL chains to fold in a regular state. However, only when the PLL chains are folded in a certain state can CPL be generated. Actually, as the structure of PLL is changed, such as from α-PLL used in this study to ε-PLL, which is a PLL with its polymerization site different from that of a-PLL, no CPL can be obtained in all cases (Supplementary Fig. 22).

In summary, we made the purely organic CTE-based CPL with the strategy of SPMSA. The CTE material PLL was forced to align well on the interface of the self-assembled oleate bilayers so that the CTE molecule PLL not only clustered but also formed a supramolecular structure and generated 2D supramolecular exciton chirality. By controlling the folding state of PLL with environmental humidity, the supramolecular chirality status of PLL can be manipulated on and off. The emission maximum of CTE in the SPMSA is excitation independent, making it in analogy to conventional luminescence. In this way, the CTE-based CPL can be further transferred and magnified via a FRET process. We believe that the SPMSA can be an efficient strategy to transform CTE molecules from random clusters into regular arranged superstructures, making it possible to generate CPL from economic and sustainable CTE.

Methods

SPMSA of PLL-OL

α-PLL, with a purity of 95%, was purchased from BYD Pharmaceuticals. NaOL, chemically pure, was purchased from Sinopharm Group. The experimental water was ultra-pure water (Milli-Q water) with a resistivity of 18.2 MΩ cm obtained by a Millipore ultra-pure water machine. An aqueous solution of PLL and an aqueous solution of NaOL was added, reaching final concentrations of 50 mM for the ammonium positive charges of PLL and 50 mM for the carboxylate negative charges of NaOL. White precipitates were immediately formed after mixing and separated from the suspension by centrifugation with a speed of 16,100 × g for 15 min. The collected precipitates were then treated in two parallel ways: subjected to a pressure imposed by finger pressing and noodle machine manufacturing under an ambient environment.

Humidity control experiment

The newly prepared films were suspended in an atmosphere and equilibrated with different saturated salt solutions for a week. The RH of the saturated salt solution is as follows: LiCl—11.30%, MgCl2—32.78%, Mg(NO3)2—52.89%, NaCl—75.29%, KNO3—93.58%.

Dyes doping

After leaving the newly prepared PLL-NaOL film for 12 h, each film was weighed and cut to 0.056 g, and then 1.3 × 10−5 to 1.3 × 10−1 mol/L FS aqueous solution 1–10 μl was gradually added. The PLL-NaOLFS film was pressed again with different FS mass fractions.

Estimation of the orientation order

The orientation order parameter (f) was estimated using the azimuthal angle plots obtained from the 2D SAXS images75. The f values range between 0 and 1, where the former corresponds to an isotropic structure, and the latter corresponds to perfect orientation along the director. A Maier–Saupe distribution function was used to fit the azimuthal angle plots

$$I={I}_{0}+A\,{{{{{\rm{exp }}}}}}\,[{{\upomega }}\,{{{{{{\rm{cos }}}}}}}^{2}(\varphi -{\varphi }_{0})]$$
(1)

where I0 denotes the free baseline intensity, φ0 is the azimuth at the position of the maximal intensity, φ is the azimuth and ω is the parameter that determines the width of the distribution. After the curve fitting of this function to the azimuthal angle plot, parameters I0, A, and ω were obtained. The orientation order parameter f was determined using the following equation

$$f=\frac{{\int }_{-1}^{1}{P}_{2}({{{{{\rm{cos }}}}}}\,\varphi )\,{{{{{\rm{exp }}}}}}({{\upomega }}\,{{{{{{\rm{cos }}}}}}}^{2}\varphi )\,{{{{{\rm{d}}}}}}{{{{{\rm{cos}}}}}}\,\varphi }{{\int }_{-1}^{1}{{{{{\rm{exp }}}}}}\,({{\upomega }}\,{{{{{{\rm{cos }}}}}}}^{2}\varphi )\,{{{{{\rm{d}}}}}}{{{{{\rm{cos}}}}}}\,\varphi }$$
(2)

where the function P2(cosφ) is the second-order Legendre polynomial of cosφ, often referred to as the Hermans orientation function

$${P}_{2}\left({{{{{\rm{cos }}}}}}\,\varphi \right)=\frac{1}{2}(3\,{{{{{{\rm{cos }}}}}}}^{2}\varphi -1)$$
(3)

Estimation of the efficiency of the transfer

The rate of energy transfer is inversely proportional to the sixth power of the distance, r, between the donor and acceptor. The efficiency of energy transfer EFRET is defined with respect to r and Ro, the characteristic Förster distance76 for the donor and acceptor pair by

$${E}_{{{{{\rm{FRET}}}}}}=\frac{1}{1+{\left(\frac{r}{{R}_{0}}\right)}^{6}}$$
(4)

where R0 is a characteristic distance for the donor–acceptor combination at which EFRET takes the value 0.5. Experimentally, FRET can be detected in several ways77,78,79,80,81. Energy transfer causes quenching of donor fluorescence and sensitized fluorescence of the acceptor. It also reduces the donor lifetime and decreases the rate of irreversible photobleaching of the donor. In this work, experimental FRET efficiencies (E) were obtained from steady-state measurements using

$$E=1-\frac{{\tau }_{{DA}}}{{\tau }_{D}}$$
(5)

where τDA and τD are the measured donor fluorescence lifetimes in the absence and in presence of the acceptor, respectively.

Data availability

All the data and methods are present in the main text and the supplementary materials. Any other relevant data are available from the authors upon reasonable request.

References

  1. 1.

    Acuña, A. U., Amat-Guerri, F., Morcillo, P., Liras, M. & Rodríguez, B. Structure and formation of the fluorescent compound of lignum nephriticum. Org. Lett. 11, 3020–3023 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Brewster, D. XIII.—On the decomposition and dispersion of light within solid and fluid bodies. Trans. R. Soc. Edinb. 16, 111–121 (1846).

    Article  Google Scholar 

  3. 3.

    Chen, M. & Yin, M. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 39, 365–395 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Tomalia, D. A. et al. Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog. Polym. Sci. 90, 35–117 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Berezin, M. Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Pakhira, M., Ghosh, R., Rath, S. P., Chatterjee, D. P. & Nandi, A. K. Zwitterionic poly(vinylidene fluoride) graft copolymer with unexpected fluorescence property. Langmuir 35, 5525–5533 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Vallan, L. et al. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J. Am. Chem. Soc. 140, 12862–12869 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Gong, Y. et al. Room temperature phosphorescence from natural products: crystallization matters. Sci. China Chem. 56, 1178–1182 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Zhang, H. et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 32, 275–292 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Yuan, W. Z. & Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci. Pol. Chem. 55, 560–574 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Wang, Q. et al. Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism. Angew. Chem. Int. Ed. 58, 12667–12673 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Wang, Y. et al. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid. Commun. 39, 6 (2018).

    Article  CAS  Google Scholar 

  13. 13.

    Dou, X. et al. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 19, 2014–2022 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Chen, X. et al. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 61, 351–359 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Zheng, S., Zhu, T., Wang, Y., Yang, T. & Yuan, W. Z. Accessing tunable afterglows from highly twisted nonaromatic organic AIEgens via effective through-space conjugation. Angew. Chem. Int. Ed. 59, 10018–10022 (2020).

    CAS  Article  Google Scholar 

  16. 16.

    Shang, C., Zhao, Y., Long, J., Ji, Y. & Wang, H. Orange-red and white-emitting nonconventional luminescent polymers containing cyclic acid anhydride and lactam groups. J. Mater. Chem. C 8, 1017–1024 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Liu, B., Chu, B., Wang, Y. L., Chen, Z. & Zhang, X. H. Crosslinking-induced white light emission of poly(hydroxyurethane) microspheres for white LEDs. Adv. Opt. Mater. 8, 1902176 (2020).

    CAS  Article  Google Scholar 

  18. 18.

    Jia, D. et al. Uncovering a broad class of fluorescent amine-containing compounds by heat treatment. Chem. Commun. 50, 11488–11491 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Shang, C. et al. Highly emissive poly(maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence. J. Mater. Chem. C 5, 8082–8090 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Guo, Z. et al. Water-soluble polymers with strong photoluminescence through an eco-friendly and low-cost route. Macromol. Rapid Commun. 38, 1700099 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Zhao, Z. et al. Sulphur-containing nonaromatic polymers: clustering-triggered emission and luminescence regulation by oxidation. Polym. Chem. 10, 3639–3646 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Du, L. L. et al. Clustering-triggered emission of cellulose and its derivatives. Chin. J. Polym. Sci. 37, 409–415 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Zhou, Q. et al. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front. 3, 257–264 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    Chen, X. et al. Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Mol. Syst. Des. Eng. 3, 364–375 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Zhou, Q. et al. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 12, 6586–6592 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Zheng, S. et al. Clustering-triggered efficient room-temperature phosphorescence from nonconventional luminophores. ChemPhysChem 21, 36–42 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Liu, P. et al. MDM2-associated clusterization-triggered emission and apoptosis induction effectuated by a theranostic spiropolymer. Angew. Chem. Int. Ed. 59, 8435–8439 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Chan, F. T. S. et al. Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst 138, 2156–2162 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Li, M., Li, X., An, X., Chen, Z. & Xiao, H. Clustering-triggered emission of carboxymethylated nanocellulose. Front. Chem. 7, 9 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Koley, S. & Ghosh, S. The study of electron transfer reactions in a dendrimeric assembly: proper utilization of dendrimer fluorescence. Phys. Chem. Chem. Phys. 18, 24830–24834 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Farshchi, R., Ramsteiner, M., Herfort, J., Tahraoui, A. & Grahn, H. T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 98, 162508 (2011).

    ADS  Article  CAS  Google Scholar 

  32. 32.

    Burrezo, P. M. et al. Organic free radicals as circularly polarized luminescence emitters. Angew. Chem. Int. Ed. 58, 16282–16288 (2019).

    Article  CAS  Google Scholar 

  33. 33.

    Maki, J. J., Verbiest, T., Kauranen, M., Elshocht, S. V. & Persoons, A. Comparison of linearly and circularly polarized probes of second‐order optical activity of chiral surfaces. J. Chem. Phys. 105, 767–772 (1996).

    ADS  CAS  Article  Google Scholar 

  34. 34.

    Zhang, X., Zhu, L., Wang, X., Shi, Z. & Lin, Q. Mechano-induced multi-functional optical switches based on chiral cyclometalated platinum(II) complexes. Inorg. Chim. Acta 442, 56–63 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 27, 305–379 (1997).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Sparks, W. B. et al. Detection of circular polarization in light scattered from photosynthetic microbes. Proc. Natl. Acad. Sci. USA 106, 7816–7821 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Shuvaev, S., Fox, M. A. & Parker, D. Monitoring of the ADP/ATP ratio by induced circularly polarised europium luminescence. Angew. Chem. Int. Ed. 57, 7488–7492 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Montgomery, C. P., New, E. J., Parker, D. & Peacock, R. D. Enantioselective regulation of a metal complex in reversible binding to serum albumin: dynamic helicity inversion signalled by circularly polarised luminescence. Chem. Commun. 36, 4261–4263 (2008).

    Article  CAS  Google Scholar 

  39. 39.

    Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Wagenknecht, C. et al. Experimental demonstration of a heralded entanglement source. Nat. Photon 4, 549–552 (2010).

    ADS  CAS  Article  Google Scholar 

  41. 41.

    Kumar, J., Nakashima, T. & Kawai, T. Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J. Phys. Chem. Lett. 6, 3445–3452 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Sánchez-Carnerero, E. M. et al. Circularly polarized luminescence from simple organic molecules. Chem. Eur. J. 21, 13488–13500 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  43. 43.

    Maniappan, S., Jadhav, A. B. & Kumar, J. Template assisted generation of chiral luminescence in organic fluorophores. Front. Chem. 8, 557650 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Sang, Y., Han, J., Zhao, T., Duan, P. & Liu, M. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv. Mater. 32, 1900110 (2020).

    CAS  Article  Google Scholar 

  45. 45.

    Zinna, F. & Di Bari, L. Lanthanide circularly polarized luminescence: bases and applications. Chirality 27, 1–13 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    MacKenzie, L. E. & Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 5, 109–124 (2021).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, M. M. et al. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem. Int. Ed. 59, 10052–10058 (2020).

    CAS  Article  Google Scholar 

  48. 48.

    Yao, L. et al. Circularly polarized luminescence from chiral tetranuclear copper(I) iodide clusters. J. Phys. Chem. Lett. 11, 1255–1260 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Wu, H., He, X., Yang, B., Li, C. C. & Zhao, L. Assembly-induced strong circularly polarized luminescence of spirocyclic chiral silver(I) clusters. Angew. Chem. Int. Ed. 60, 1535–1539 (2021).

    CAS  Article  Google Scholar 

  50. 50.

    Wang, X. Y., Zhang, J., Yin, J., Liu, S. H. & Tang, B. Z. More is better: aggregation induced luminescence and exceptional chirality and circularly polarized luminescence of chiral gold clusters. Mater. Chem. Front. 5, 368–374 (2021).

    CAS  Article  Google Scholar 

  51. 51.

    Han, Z. et al. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 13, 3248–3252 (2020).

    ADS  CAS  Article  Google Scholar 

  52. 52.

    Zhang, M.-M., Li, K. & Zang, S.-Q. Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence. Adv. Opt. Mater. 8, 1902152 (2020).

    CAS  Article  Google Scholar 

  53. 53.

    Kubo, H. et al. Tuning transition electric and magnetic dipole moments: [7]helicenes showing intense circularly polarized luminescence. J. Phys. Chem. Lett. 12, 686–695 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Kono, Y. et al. Can chiral P(iii) coordinate Eu(iii)? Unexpected solvent dependent circularly polarised luminescence of BINAP and Eu(iii)(hfa)3 in chloroform and acetone. RSC Adv. 6, 40219–40224 (2016).

    ADS  CAS  Article  Google Scholar 

  55. 55.

    Kenry, Tang, B. Z. & Liu, B. Catalyst: aggregation-induced emission—how far have we come, and where are we going next? Chemistry 6, 1195–1198 (2020).

    CAS  Article  Google Scholar 

  56. 56.

    Zhang, H. et al. Aggregate science: from structures to properties. Adv. Mater. 32, 2001457 (2020).

    CAS  Article  Google Scholar 

  57. 57.

    Zhao, Z., Zhang, H., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: new vistas at the aggregate level. Angew. Chem. Int. Ed. 59, 9888–9907 (2020).

    CAS  Article  Google Scholar 

  58. 58.

    Jin, H. et al. Pressing-induced caking: a general strategy to scale-span molecular self-assembly. CCS Chem. 2, 98–106 (2020).

    CAS  Article  Google Scholar 

  59. 59.

    Wang, W. et al. The pressing-induced formation of a large-area supramolecular film for oil capture. Mater. Chem. Front. 4, 1530–1539 (2020).

    CAS  Article  Google Scholar 

  60. 60.

    Xie, M. et al. Caking-inspired cold sintering of plastic supramolecular films as multifunctional platforms. Adv. Funct. Mater. 28, 1803370 (2018).

    Article  CAS  Google Scholar 

  61. 61.

    Zhang, Q. et al. Simple aliphatic oximes as nonconventional luminogens with aggregation-induced emission characteristics. J. Mater. Chem. C 5, 3699–3705 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Shiau, S. F., Juang, T. Y., Chou, H. W. & Liang, M. Synthesis and properties of new water-soluble aliphatic hyperbranched poly(amido acids) with high pH-dependent photoluminescence. Polymer 54, 623–630 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    Pan, X. et al. Photoluminescence from amino-containing polymer in the presence of CO2: carbamato anion formed as a fluorophore. Sci. Rep. 3, 2763 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Cao, H., Li, B., Jiang, X., Zhu, X. & Kong, X. Z. Fluorescent linear polyurea based on toluene diisocyanate: easy preparation, broad emission and potential applications. Chem. Eng. J. 399, 125867 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Kruk, M., Jaroniec, M., Yang, Y. & Sayari, A. Determination of the lamellar phase content in MCM-41 using X-ray diffraction, nitrogen adsorption, and thermogravimetry. J. Phys. Chem. B 104, 1581–1589 (2000).

    CAS  Article  Google Scholar 

  66. 66.

    Hashimoto, Y. et al. In-plane oriented highly ordered lamellar structure formation of poly(N-dodecylacrylamide) induced by humid annealing. RSC Adv. 7, 6631–6635 (2017).

    ADS  CAS  Article  Google Scholar 

  67. 67.

    Taniguchi, T. & Monde, K. Exciton chirality method in vibrational circular dichroism. J. Am. Chem. Soc. 134, 3695–3698 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Richardson, F. S. & Riehl, J. P. Circularly polarized luminescence spectroscopy. Chem. Rev. 77, 773–792 (1977).

    CAS  Article  Google Scholar 

  69. 69.

    Riehl, J. P. & Richardson, F. S. Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986).

    CAS  Article  Google Scholar 

  70. 70.

    Chen, Y. et al. Dual stimuli-responsive high-efficiency circularly polarized luminescence from light-emitting chiral nematic liquid crystals. ACS Appl. Mater. Interfaces 12, 56604–56614 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Yang, B. et al. Enhanced synchronously emission dissymmetry factor and quantum efficiency of circularly polarized phosphorescence from point-chiral cyclometalated platinum(II) liquid crystal. J. Phys. Chem. C 124, 23879–23887 (2020).

    CAS  Article  Google Scholar 

  72. 72.

    Albano, G., Pescitelli, G. & Di Bari, L. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 120, 10145–10243 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Liu, M. et al. Instrument response standard in time-resolved fluorescence spectroscopy at visible wavelength: quenched fluorescein sodium. Appl. Spectrosc. 68, 577–583 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Quan, L. et al. Poly(ε-caprolactone) modified organic dyes nanoparticles for noninvasive long term fluorescence imaging. Colloids Surf. B 173, 884–890 (2019).

    CAS  Article  Google Scholar 

  75. 75.

    Zhao, C. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580, 210–215 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 2, 55–74 (1948).

    MATH  Article  Google Scholar 

  77. 77.

    Grainger, R. J., Norman, D. G. & Lilley, D. M. J. Binding of U1A protein to the 3′ untranslated region of its pre-mRNA. J. Mol. Biol. 288, 585–594 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of < 100 angstrom using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Madeira, C., Loura, L. M. S., Aires-Barros, M. R., Fedorov, A. & Prieto, M. Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. Biophys. J. 85, 3106–3119 (2003).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Wang, Z. et al. White-light emission from dual-way photon energy conversion in a dye-encapsulated metal-organic framework. Angew. Chem. Int. Ed. 58, 9752–9757 (2019).

    ADS  CAS  Article  Google Scholar 

  81. 81.

    Zhang, C. et al. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 32, 2002914 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC 91856120 and 21633002).

Author information

Affiliations

Authors

Contributions

P.L. and Y.Y. designed the research; P.L., S.Z., T.W., H.J. and W.W. contributed to the experiments; P.L., S.Z., J.H., B.Z.T. and Y.Y. analyzed the data; P.L. wrote up the draft of this paper; Y.Y. and B.Z.T. improved the paper; Y.Y. initiated and supervised the research.

Corresponding authors

Correspondence to Ben Zhong Tang or Yun Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, P., Zang, S., Wu, T. et al. Generating circularly polarized luminescence from clusterization‐triggered emission using solid phase molecular self-assembly. Nat Commun 12, 5496 (2021). https://doi.org/10.1038/s41467-021-25789-9

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing