Abstract
Roton dispersion relations have been restricted to correlated quantum systems at low temperatures, such as liquid Helium4, thin films of Helium3, and Bose–Einstein condensates. This unusual kind of dispersion relation provides broadband acoustical backward waves, connected to energy flow vortices due to a “return flow”, in the words of Feynman, and three different coexisting acoustical modes with the same polarization at one frequency. By building mechanisms into the unit cells of artificial materials, metamaterials allow for molding the flow of waves. So far, researchers have exploited mechanisms based on various types of local resonances, Bragg resonances, spatial and temporal symmetry breaking, topology, and nonlinearities. Here, we introduce beyondnearestneighbor interactions as a mechanism in elastic and airborne acoustical metamaterials. For a thirdnearestneighbor interaction that is sufficiently strong compared to the nearestneighbor interaction, this mechanism allows us to engineer rotonlike acoustical dispersion relations under ambient conditions.
Introduction
For usual acoustical waves or phonons in gases, liquids, and solids, energy and momentum are proportional to each other^{1}. Rotons can be seen as highly unusual acoustical waves with a parabolic minimum of the energy versus momentum at finite momentum and finite energy^{2}. Based on a prediction by Landau^{2} and following a suggestion by Feynman^{3,4}, the roton dispersion relation for longitudinal acoustical waves was observed in liquid Helium4 (a Boseliquid) at low temperatures by means of inelastic neutron scattering^{5,6,7}. A bulk of later theoretical work interpreted rotons in terms of strong spatial correlations in this quantum system^{8,9,10}. More recently, rotons have been found experimentally in twodimensional (2D) liquid Helium3^{11} (a Fermiliquid) and in Bose–Einstein condensates of erbium atoms subject to weak magnetic dipole–dipole interactions^{12}. The roton dispersion relation has also been predicted theoretically for other ultracold dipolar^{13} and quadrupolar^{14} gases confined in onedimensional (1D) and 2D geometries^{15,16,17}, as well as for Rydbergdressed atoms^{18}.
The roton dispersion relation is illustrated in Fig. 1, where we represent energy as \(\hslash \omega\), with the wave’s angular frequency \(\omega\), and (quasi)momentum by \(\hslash k\), with the wavenumber \(k\). Apart from its basic physics, the dispersion relation in Fig. 1 is interesting for applications because it potentially allows to manipulate acoustical waves in unusual ways. First, it comprises a region of negative slope of \(\omega (k)\) versus \(k\), in which the wave’s phase velocity \({v}_{{\rm{ph}}}=\omega /k \,> \, 0\) and group velocity \({v}_{{\rm{gr}}}={\rm{d}}\omega /{\rm{d}}k \,<\, 0\) have opposite sign. Such behavior gives rise to backward waves and can lead to negative refraction at interfaces^{19,20,21}. We will see below that this characteristic can occur without absorption/damping over a broad spectral regime. Second, the extrema of the dispersion relation in Fig. 1 correspond to zero group velocity and hence to peaks in the wave density of states. Third, at a given fixed angular frequency \(\omega\) and for \(k \,> \, 0\), the single dispersion curve supports three (one backward, two forward) wave modes with three different wavenumbers, phase velocities, and wavelengths. Unfortunately, no natural or rationally designed artificial materials showing rotonlike dispersion behavior under ambient conditions have been reported so far.
It is well known that the Euler equation for classical gases or liquids^{22} and the Navier equation for elastic solids^{23} lead to dispersion relations of the type \(\omega (k)={v}_{{\rm{ph}}}k\) for longitudinal or transverse acoustical waves in the bulk. Thus, neither of them captures rotonlike behavior. In sharp contrast, it has recently been shown that chiral Eringen micropolar continuum elasticity theory^{24} can lead to rotonlike dispersion relations for transverse acoustical elastic waves^{25}. In their work^{25}, chirality has been a necessary mechanism, whereas mechanisms based on periodicity, such as ordinary or extraordinary Bragg reflections, are not accounted for in micropolar elasticity theory^{24}. More broadly speaking, mechanisms such as ordinary Bragg reflection^{26,27}, local resonances^{28,29,30,31}, nearideal joints^{32,33,34} introducing soft modes, spatial or temporal symmetry breaking^{35,36,37,38}, topology^{39,40}, duality^{41,42}, as well as geometrical nonlinearities^{34,43} have independently given rise to a wealth of other unusual dispersion relations and quasistatic behaviors of elastic and acoustical metamaterials.
Here, we introduce and analyze a class of threedimensional (3D) microstructured elastic metamaterials supporting rotonlike transverse as well as longitudinal dispersion relations. We engineer these metamaterials by tailoring beyondnearestneighbor elastic interactions among the 3D metamaterial crystal unit cells in addition to the usual nearestneighbor interactions. Furthermore, we apply the same concept to airborne acoustical waves in macroscopic threedimensional channelbased metamaterials to illustrate the general nature of the approach.
Results
Onedimensional toy model
Let us start our discussion by a simple 1D mathematical toy model illustrated in Fig. 2a: Identical masses \(m\) separated by distance \(a\) are connected to their immediate neighbors by linear Hooke’s springs with spring constant \({K}_{1}\). In addition, each mass shall be coupled to the masses separated by distance \({Na}\) to the left and right (with integer \(N\ge 2\)) by springs with spring constant \({K}_{N}\). Newton’s equation of motion for the acceleration \({\ddot{u}}_{n}\) of the mass displacement \({u}_{n}\) at lattice site \(n\) (with integer \(n=\infty ,\ldots ,\infty\)) is given by
The solution of this equation of motion are Bloch waves, \({u}_{n}\left(t\right)=\widetilde{u}\,{{\exp}}({\rm{i}}({kna}\omega t))\) with amplitude \(\widetilde{u}\) and the imaginary unit \({\rm{i}}\), following the dispersion relation
We emphasize that, for \({K}_{1}\,\ne\, 0\) and \({K}_{3}\,\ne\, 0\), the underlying spatial period is strictly \(a\). Therefore, the borders of the first Brillouin zone lie at \(\leftk\right=\pm\!\pi /a\). For \(0\le k\ll \pi /a\), we recover a usual acousticwave dispersion relation with \(\omega \left(k\right)={v}_{{\rm{ph}}}k\) and phase velocity \({v}_{{\rm{ph}}}=a\sqrt{({K}_{1}+{K}_{N}{N}^{2})/m}\) . For \(N\ge 3\) and \({K}_{N}/{K}_{1} \,> \, 1/N\), a minimum of \(\omega (k)\) occurs inside of the first Brillouin zone at wavenumber \(k\approx 2\pi /({Na}) \,<\, \pi /a\).
Example dispersion relations for \(N=3\) and different ratios of \({K}_{3}/{K}_{1}\) (see different colors) are depicted in Fig. 2b. For \({K}_{3}=0\) and \({K}_{1}\,\ne\, 0\), we obtain the usual acoustical phonon dispersion relation in the first Brillouin zone corresponding to spatial period \(a\), i.e., \(0\le k\le \pi /a\). For the opposite limit of \({K}_{1}=0\) and \({K}_{3}\,\ne\, 0\), the massandspring model shown in Fig. 2a falls apart into \(N=3\) disconnected staggered onedimensional chains, each with spatial period \({Na}=3a\). We thus again obtain a usual acoustical phonon dispersion relation, however, the first Brillouin zone is given by \(\leftk\right\le \pi /(3a)\). For \(k\in [\pi /(3a),2\pi /(3a)]\), the group velocity is negative, regardless of which Brillouin zone we use for the representation of the dispersion relation. The mean energy flow (see Methods)
has two contributions. The contribution \(\propto {K}_{1}\) is always positive for \(0 \,<\, k \,<\, \pi /a\) and stems from the nearestneighbor interactions. The contribution \(\propto {K}_{N}\) due to the beyondnearestneighbor interactions is negative in the interval \(k\in [\pi /(3a),2\pi /(3a)]\), leading to a net negative energy flow if \({K}_{N}/{K}_{1} \,> \, 1/N\). This aspect is analogous to what Feynman^{4} referred to as the “return flow” in the context of the roton. Therefore, the sign of the group velocity and that of the energy flow are identical and independent on the choice of the Brillouin zone. The sign and magnitude of the phase velocity \(\omega /k\), however, depend on the Brillouin zone. If and only if the nearestneighbor interaction is finite, i.e., for \({K}_{1}\,\ne\, 0\), the spatial period is \(a\), hence \(\leftk\right\le \pi /a\) is the proper first Brillouin zone. This leads to a positive phase velocity in the interval \(k\in [0,\pi /a]\), whereas the group velocity and the mean energy flow are negative for part of this interval (approximately for \(k\in [\pi /(3a),2\pi /(3a)]\)) for \({K}_{N}/{K}_{1} \,> \, 1/N\). This behavior corresponds to a backward wave. The two wavenumbers for which the total energy flow and hence the group velocity are zero (cf. Fig. 2b) are merely special cases. On the basis of this discussion, the rotonlike behavior can be seen as an unusual hybridization between two ordinary acoustical phonon dispersion relations, one for a massandspring model with period \(a\) and the other for a threefold degenerate massandspring model with period \({Na}=3a\) (cf. Fig. 2b).
In other words, the rotonlike minimum in the dispersion relation \(\omega (k)\) of the 1D toy model with spatial period \(a\) results from extraordinary Bragg reflections with reciprocal lattice vector \(2\pi /l\), corresponding to the length \(l={Na}\) of the beyondnearestneighbor interaction. A rotonlike minimum occurs if and only if the interaction has sufficiently long range (i.e., \(N\ge 3\)) and the strength of the beyondnearestneighbor interaction is sufficiently large (i.e., \({K}_{N}/{K}_{1} > 1/N\)). For \(N\ge 4\), even several minima can occur within the first Brillouin zone.
To test our interpretation of the rotonlike dispersion relation, we prescribe the displacement of a single mass in the middle of the 1D toy model chain (cf. Fig. 2a), \({u}_{0}\left(t\right)=\widetilde{u}{{\cos }}(\omega t){{\exp }}({\left(t/\tau \right)}^{2})\), by a temporal pulse with Gaussian envelope and carrier frequency \(\omega =0.5{{\rm{\omega }}}_{0}\) in the spectral region of the rotonlike dispersion relation for which \(k(\omega )\) has three solutions. For the parameter range from \({K}_{3}/{K}_{1}\approx 2\) to \({K}_{3}/{K}_{1}\approx 5\), this excitation launches two clearly visible triplets of Gaussian wave packets (see Supplementary Figs. 1 and 2). This dependence on the ratio \({K}_{3}/{K}_{1}\) indicates that the effects of the discussed hybridization are most pronounced if the two ingredient phonon dispersion relations effectively have about equal weight. The rightgoing (leftgoing) triplet has positive (negative) mean energy flow and group velocity. Each triplet contains two forward waves and one backward wave. For the latter, group and phase velocity have opposite sign (see insets in Supplementary Fig. 1). These findings are consistent with the expectation from Fig. 1b and confirm our reasoning. Furthermore, Supplementary Fig. 3 shows that each of the three rightpropagating modes can be excited selectively by tailoring of the excitation conditions.
Threedimensional microstructured elastic metamaterial
Next, we translate the behavior of the 1D mathematical toy model into a practical metamaterial structure. From Fig. 2a it is clear that the (red) beyondnearestneighbor springs unavoidably overlap in two dimensions, making it necessary to go to three dimensions. The 3D architecture depicted in Fig. 3 (also see Supplementary Movie 1) is composed of a single ordinary linear elastic constituent material, e.g., a polymer. The masses in the 1D toy model are replaced by the small cubes with side length \({t}_{1}\). The effective spring constants of the nearestneighbor (beyondnearestneighbor) interaction between these cubes are tailored by the radius of the thin (thick) cylindrical rods \({r}_{1}({r}_{2})\). The frame with height \({t}_{2}\) serves as an auxiliary structure to mediate the beyondnearestneighbor interaction for \(N=3\). Starting from any one cube, the oblique rods connect to the auxiliary frame, from which another set of oblique rods connects to the thirdnearestneighbor of the starting cube. Clearly, the two types of rods and the auxiliary frames introduce substantial additional mass, which needs to be considered. The resulting metamaterial structure in Fig. 3 is highly anisotropic, has no center of inversion, but two mirror planes and a rotationreflection symmetry, namely a 90degree rotation around the \(z\)axis combined with a reflection of a plane parallel to the \({xy}\)plane. The structure is therefore not chiral and the lowest two transverse acoustical bands are degenerate by symmetry for propagation along the \(z\)axis with wave vector \(\vec{k}=({\mathrm{0,0}},{k}_{z})\). When designing the elements mediating the beyondnearestneighbor interaction, it is important that the (local) resonance frequencies of these elements are pushed to much higher frequencies than the frequencies of the lowestfrequency acoustical bands. Otherwise, one obtains a complex band diagram comprising band crossings and avoided crossings such that the rotonlike dispersion relation is obscured. Clearly, fulfilling this condition becomes increasingly difficult with increasing range of the beyondnearestneighbor interaction (i.e., with increasing integer \(N\) in the toy model) because increasing length of beams clearly leads to decreasing beam resonance frequency at otherwise fixed parameters.
In Fig. 4a, we depict the calculated phonon band structure of the microstructure shown in Fig. 3. Here, we have numerically solved the eigenvalue problem for the Navier equation^{23} for the displacement vector field \(\vec{u}\) (see Methods). The used parameters for the ordinary elastic constituent material refer to a typical polymer with Young’s modulus \(E=4.2\;{\rm{GPa}}\), Poisson’s ratio \(\nu =0.4\), and mass density ρ = 1140 kg m^{−3}. These parameters merely serve as an example. The frequency axis in Fig. 4 can easily be scaled to other values of \(E\), \(\rho\), and \(a\) at fixed \(\nu\). In Fig. 4a, we find rotonlike dispersion relations for the two degenerate transverse acoustical bands as well as for the longitudinal acoustical phonon mode—as expected from our discussion of the 1D toy model. The higher bands plotted in gray are of lesser importance here. These bands emerging from \({k}_{z}=0\) with finite \(\omega\) do not occur in the toy model. They are partly due to local resonances of the long connecting cylindrical beams.
In Fig. 4b, we illustrate the energy flux along the \(z\)direction in one unit cell for three different Bloch modes of the longitudinal band at the same frequency of \(0.65\;{\rm{MHz}}\). For the two eigenmodes A and C with positive group velocity, the mean energy flow in the vertical rods, acting as nearestneighbor springs, and in the oblique rods, mediating the beyondnearestneighbor coupling, is positive. In contrast, for mode B with negative group velocity, the oblique rods support a backward propagating partial wave, while the partial wave in the vertical rods is a forward wave. The sum of the two energy flows is negative, consistent with negative group velocity. This behavior is the same as for the above 1D toy model. In both cases, the partial forward and partial backward energy flow lead to a vortexlike behavior of the energy flow. In his work on rotons^{4}, Feynman referred to the backward energy flow contribution as a “return flow”.
The complete phonon band structure for all highsymmetry directions in three dimensions is shown in Fig. 5. Roton behavior only occurs along the ΓZdirection (cf. Fig. 4a).
The rotonlike behavior discussed thus far refers to the bulk, i.e., to a metamaterial crystal which is infinitely extended along all three spatial directions. It is interesting to ask whether the behavior is robust and could also be observed in a metamaterial beam with finite cross section. Therefore, in Supplementary Fig. 4, we show results for a beam with a cross section of merely \(2\times 2\) unit cells (cf. Fig. 3a). A rotonlike dispersion relation for the transverse bands is maintained. Rotonlike behavior is also found for the twist band in Supplementary Fig. 4, which additionally appears due to the finite cross section of the beam.
Furthermore, we have emphasized that the structure shown in Fig. 3a, which contains the crucial beyondnearestneighbor interactions, is not chiral. Therefore, chirality is clearly not a necessary condition for rotonlike behavior. Due to the absence of chirality, the two lowest transverse bands in Fig. 4a are degenerate and the associated eigenmodes do not contain any sort of rotation. However, we can introduce chirality into this metamaterial structure by “twisting the rods” mediating the beyondnearestneighbor interactions. We additionally double the number of these rods to obtain fourfold rotational symmetry around the \(z\)axis. The resulting structure is illustrated in Supplementary Fig. 5, which can be compared to its achiral counterpart in Fig. 3. The corresponding phonon band structure depicted in Supplementary Fig. 6 again shows a rotonlike dispersion relation. In addition, as a result of chirality, the degeneracy of the two lowest transverse bands is lifted (compare Fig. 4a and Supplementary Fig. 6) and the eigenmodes become chiral (see Supplementary Fig. 6), which means that they are directly associated to rotations within the unit cells. This aspect makes the connection to the original interpretation of rotons according to Landau^{2} and Feynman^{3} in terms of rotations of groups of Helium4 atoms even closer.
Threedimensional tubebased metamaterial for airborne sound
We now translate the findings of the 1D toy model to airborne acoustical waves (or sound) rather than elastic waves in the previous section. Recall that classical forces (in the sense of Newton’s second law), which are mediated by the Hooke’s springs in Fig. 2a or by the cylindrical solid elastic beams in Fig. 3, can be interpreted as momentum currents^{44,45} in the language of continuum mechanics. For airborne acoustical waves, the momentum current is directly related to the instantaneous air current. The air current along the tube axis in a cylindrical tube with rigid walls can obviously be controlled by the inner cross section of the tube.
This analogy allows us to propose a 3D metamaterial architecture for airborne sound. The structure is the complement of the one shown in Fig. 4a. This means that the constituent material is replaced by voids and vice versa. Air propagates in the resulting channels inside a rigid material. By tailoring the inner diameter of the channels, we engineer the effective strength of the nearestneighbor and beyondnearestneighbor interaction, respectively. The calculated acoustical wave dispersion relation shown in Fig. 6a again exhibits rotonlike behavior. Here we have neglected friction between air and the walls (see Methods). The latter assumption has been used many times in the literature^{46,47} and is justified if the diameter of the channels is sufficiently large. Therefore, we consider rather macroscopic parameters in Fig. 6 (\({a}_{z}=10\;{\rm{cm}}\)). As air exclusively supports longitudinal pressure waves (and no transverse modes), the resulting overall band structure in Fig. 6a is simpler than the one for elastic waves in Fig. 4. Finally, we depict examples of the energy flow in Fig. 6b. As expected from the mentioned analogy between forces and air currents, the behavior is closely similar to that shown in Fig. 4b for the 3D elastic metamaterial.
Discussion
The famous roton dispersion relation for acoustical waves has first been predicted for and later observed in the Boseliquid Helium4 at low temperatures^{2,3,4,5,6}. More recently, it has also been discussed for the Fermiliquid Helium3 at low temperatures^{11} and for interacting atoms in Bose–Einstein condensates^{12,13,14,15,16,17}. Here, we have realized rotonlike dispersion relations by designed periodic metamaterials for both, elastic waves or phonons in solids and pressure waves in gases. All of these are classical systems operating under ambient conditions. The underlying mechanism is based on designed thirdnearestneighbor interactions in addition to the usual nearestneighbor interactions. The thirdnearestneighbor interaction gives rise to a hybridization of phonon branches with different spatial periods and hence to extraordinary Bragg reflections with reciprocal lattice vectors smaller than the wave vector at the edge of the first Brillouin zone. For both, the proposed (achiral and chiral) 3D microscopic microstructures for elastic waves and the proposed 3D macroscopic channelbased structures for airborne sound waves, the 3D additive manufacturing technology required to make the metamaterial unit cells is readily available. However, large numbers of unit cells are needed to avoid edge effects. This aspect together with directly measuring the rotonlike dispersion relations represents a challenge.
The approach can be generalized to more than just two types of interactions, i.e., to the combined action of nearestneighbor, secondnearestneighbor, thirdnearestneighbor, etc. interactions. This generalization would allow for tailoring almost any wanted dispersion relation of acoustical waves or phonons in the spirit of a Fourier expansion. However, feasible corresponding threedimensional microstructures would need to be designed. The idea of beyondnearestneighbor interactions can also be combined with a variety of established other mechanisms in metamaterial design to obtain further unusual and useful effective material behaviors.
Methods
Energy flow in the 1D toy model
Equation (3) for the energy flow in the 1D toy model has been derived as follows. For the Bloch waves with wavenumber \(k\) and angular frequency \(\omega\), the displacement of the mass at lattice site \(n\) is given by \({u}_{n}\left(t\right)=\widetilde{u}\,{{\exp }}({\rm{i}}({kna}\omega t))\). The energy, which is transmitted through the Hooke’s springs that couple neighboring masses (cf. Fig. 2a), averaged over an oscillation period, is given by
Herein, the term \({K}_{1}\left({u}_{n1}{u}_{n}\right)\) is the force acting onto the mass at lattice site \(n\) by the Hooke’s spring to its left and the symbol * stands for the complex conjugate. Similarly, the mean energy flow through the Hooke’s springs that mediate the beyondnearestneighbor coupling is
The total mean energy flow through the 1D toy model is the sum of these two contributions
Elastic metamaterials
We have numerically solved the eigenvalue equation derived from linear Cauchy elasticity^{23} for the displacement vector field \({\vec{u}}_{\vec{k},i}(\vec{r})\) with band index \(i\) at wave vector \(\vec{k}\) and for the angular frequency \({\omega }_{i}(\vec{k})\)
by using the commercial software Comsol Multiphysics, its MUMPS solver, FloquetBloch periodic boundary conditions corresponding to the threedimensional geometry shown in Fig. 3 for all three spatial directions, and tractionfree boundary conditions for all interfaces to voids (air or vacuum). \(E\) is the Young’s modulus, \(\nu\) the Poisson’s ratio, and \(\rho\) the mass density of the constituent material. The geometry shown in Fig. 3 has been meshed by about 100 thousand tetrahedra to achieve convergence of the results. The energy flux vector averaged over one temporal oscillation period has been evaluated by the formula
where \(\ast\) denotes the complex conjugate. In Fig. 4b, the \(z\)component of this vector, \({I}_{z}\), is plotted. This component has been obtained directly from the Solid Mechanics Module of Comsol Multiphysics.
Metamaterials for airborne acoustical waves
In the calculations shown in Fig. 6b, we have solved the scalar wave equation^{22} for the air pressure modulation \({\widetilde{P}}_{\vec{k},i}(\vec{r})\) of the band with band index \(i\) at wave vector \(\vec{k}\) in the Fourier domain, corresponding to the eigenvalue problem
with the speed of sound in air \({v}_{{\rm{air}}}=340\;{\rm{m}}/{\rm{s}}\), by using the commercial software Comsol Multiphysics. The considered geometry is the complement of the geometry illustrated and defined in Fig. 3. We assume Bloch periodic boundary conditions along all three spatial directions and the walls of all channels as rigid immovable boundaries via Neumann boundary conditions. The energy flux vector averaged over one temporal oscillation period has been evaluated by
with the imaginary unit \({\rm{i}}\) and the air mass density \({\rho }_{{\rm{air}}}=1.29\;{\rm{kg}}{{\rm{m}}}^{3}\). In Fig. 6b, the \(z\)component of this vector, \({I}_{z}\), is plotted. For the numerical calculations, the Pressure Acoustics Module of Comsol Multiphysics has been used. The quantity \({I}_{z}\) has been obtained directly by this module.
Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Code availability
Numerical simulations in this work for the 1D toy model are all performed using the commercial software MATLAB. Numerical simulations in this work for the elastic and acoustic metamaterials are all performed using the commercial software COMSOL Multiphysics. All related codes can be built with the instructions provided in the main text and in the Methods section.
References
Kittel, C. Introduction to Solid State Physics (Wiley, 2005).
Landau, L. Theory of the Superfluidity of Helium II. Phys. Rev. 60, 356 (1941).
Feynman, R. P. Atomic theory of the twofluid model of liquid helium. Phys. Rev. 94, 262 (1954).
Feynman, R. P. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189 (1956).
Henshaw, D. G. & Woods, A. D. B. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. Lett. 121, 1266 (1961).
Woods, A. D. B. Neutron inelastic scattering from liquid helium at small momentum transfers. Phys. Rev. Lett. 14, 355 (1965).
Beauvois, K. et al. Microscopic dynamics of superfluid ^{4}He: a comprehensive study by inelastic neutron scattering. Phys. Rev. B 97, 184520 (2018).
Schneider, T. & Enz, C. P. Theory of the superfluidsolid transition of ^{4}He. Phys. Rev. Lett. 27, 1186 (1971).
Glyde, H. R. & Griffin, A. Zero sound and atomiclike excitations: the nature of phonons and rotons in liquid ^{4}He. Phys. Rev. Lett. 65, 1454 (1990).
Kalman, G. J., Hartmann, P., Golden, K. I., Filinov, A. & Donkó, Z. Correlational origin of the roton minimum. EPL 90, 55002 (2010).
Godfrin, H. et al. Observation of a roton collective mode in a twodimensional Fermi liquid. Nature 483, 576–579 (2012).
Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Rotonmaxon spectrum and stability of trapped dipolar BoseEinstein condensates. Phys. Rev. Lett. 90, 250403 (2003).
Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).
Lahrz, M., Lemeshko, M. & Mathey, L. Exotic roton excitations in quadrupolar BoseEinstein condensates. N. J. Phys. 17, 45005 (2015).
Henkel, N., Nath, R. & Pohl, T. Threedimensional roton excitations and supersolid formation in Rydbergexcited BoseEinstein condensates. Phys. Rev. Lett. 104, 195302 (2010).
Mottl, R. et al. Rotontype mode softening in a quantum gas with cavitymediated longrange interactions. Science 336, 1570–1573 (2012).
Ha, L., Clark, L. W., Parker, C. V., Anderson, B. M. & Chin, C. RotonMaxon excitation spectrum of Bose condensates in a shaken optical lattice. Phys. Rev. Lett. 114, 55301 (2015).
Zeiher, J. et al. Manybody interferometry of a Rydbergdressed spin lattice. Nat. Phys. 12, 1095–1099 (2016).
Smith, D. R., Pendry, J. B. & Wiltshire, M. Metamaterials and negative refractive index. Science 305, 788–792 (2004).
GarciaChocano, V. M., Christensen, J. & SanchezDehesa, J. Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014).
Zhu, R., Liu, X. N., Hu, G. K., Sun, C. T. & Huang, G. L. Negative refraction of elastic waves at the deepsubwavelength scale in a singlephase metamaterial. Nat. Commun. 5, 5510 (2014).
Fox, R. W., McDonald, A. T. & Mitchell, J. W. Introduction to Fluid Mechanics (Wiley, 2020).
Milton, G. W. The Theory of Composites (Cambridge University Press, 2002).
Eringen, A. C. Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966).
Kishine, J., Ovchinnikov, A. S. & Tereshchenko, A. A. Chiralityinduced phonon dispersion in a noncentrosymmetric micropolar crystal. Phys. Rev. Lett. 125, 245302 (2020).
Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystal: Molding The Flow of Light (Princeton University Press, 2008).
Deymier, P. A. Acoustic Metamaterials and Phononic Crystals (Springer, 2013).
Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).
Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015).
Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, 1501595 (2016).
Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).
Kadic, M., Bückmann, T., Stenger, N., Thiel, M. & Wegener, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).
Bueckmann, T. et al. On threedimensional dilational elastic metamaterials. N. J. Phys. 16, 33032 (2014).
Coulais, C., Kettenis, C. & van Hecke, M. A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40 (2017).
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).
Frenzel, T., Kadic, M. & Wegener, M. Threedimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).
Chen, Y., Kadic, M., Guenneau, S. & Wegener, M. Isotropic chiral acoustic phonons in 3D quasicrystalline metamaterials. Phys. Rev. Lett. 124, 235502 (2020).
Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 5(9), 1–19 (2020).
Suesstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
Huber, S. D. Topological mechanics. Nat. Phys. 12, 621 (2016).
Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and nonAbelian mechanics. Nature 577, 636–640 (2020).
Fruchart, M. & Vitelli, V. Symmetries and dualities in the theory of elasticity. Phys. Rev. Lett. 124, 248001 (2020).
Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).
Planck, M. Bemerkungen zum Prinzip der Aktion und Reaktion in der allgemeinen Dynamik. Phys. Z 98, 30 (1908).
Disessa, A. A. Momentum flow as an alternative perspective in elementary mechanics. Am. J. Phys. 48, 365–369 (1980).
Liang, Z. X. & Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).
Peri, V. et al. Experimental characterization of fragile topology in an acoustic metamaterial. Science 367, 797–800 (2020).
Acknowledgements
We thank Tobias Frenzel (KIT) and Jörg Schmalian (KIT) for stimulating discussions. Y.C. acknowledges support by the Alexander von Humboldt Foundation and by the National Natural Science Foundation of China (contract 11802017). This research has additionally been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster “3D Matter Made to Order” (EXC2082/1390761711), which has also been supported by the CarlZeiss Foundation through the “CarlZeissFoundationFocus@HEiKA”, by the State of BadenWürttemberg, and by the Karlsruhe Institute of Technology (KIT). We further acknowledge support by the Helmholtz program “Materials Systems Engineering” (MSE). M.K. is grateful for support by the EIPHI Graduate School (contract ANR17EURE0002). We acknowledge support by the KITPublication Fund of the Karlsruhe Institute of Technology.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
M.W. and M.K. had the idea to incorporate beyondnearestneighbor interactions, Y.C. and M.K. designed the metamaterials. Y.C. performed the numerical simulations. M.W. supervised the project and drafted the paper. All authors contributed to the interpretation of the results and to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chen, Y., Kadic, M. & Wegener, M. Rotonlike acoustical dispersion relations in 3D metamaterials. Nat Commun 12, 3278 (2021). https://doi.org/10.1038/s41467021235742
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467021235742
This article is cited by

Lightsheet 3D microprinting via twocolour twostep absorption
Nature Photonics (2022)

Wave propagation in fractionally damped nonlinear phononic crystals
Nonlinear Dynamics (2022)

Nonlocal oddities
Nature Physics (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.