Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reply to: “Correlation between paddy rice growth and satellite-observed methane column abundance does not imply causation”

The Original Article was published on 19 February 2021

Replying to Z. Zeng et al. Nature Communications (2021)

Atmospheric methane concentration (XCH4) measured by satellite-based sensors is affected by in situ CH4 emissions (local fluxes), atmospheric chemistry, and atmospheric transport (external fluxes). Based on annual paddy rice maps at the 500-m spatial resolution, our study1 investigated the spatial and seasonal consistency between rice paddies and atmospheric methane concentration in monsoon Asia. In our study1, we implied that annual paddy rice maps at moderate spatial resolution (500 m) may be used to increase the accuracy of and reduce the uncertainty in modeling XCH4 dynamics over those areas with moderate to large proportions of rice paddy. We appreciate the comments from Zeng et al.2 as their work used the Greenhouse Gas Framework – Flux (GHGF-Flux) forward model, a state-of-the-art flux inversion system used by the National Aeronautics and Space Administration (NASA) Carbon Monitoring System program. Their results, analyses, and discussion offer insights into how the GHGF-Flux model assesses the relative roles of in situ CH4 emissions, atmospheric chemistry, and atmospheric transport in the spatial-temporal dynamics of XCH4. Here, we provide our responses to the two concerns raised by Zeng et al.2, which may further unveil the role of paddy rice agriculture in the seasonal dynamics and spatial distributions of XCH4 in monsoon Asia.

Zeng et al.2 analyzed the relative contributions of locally emitted CH4 fluxes and externally transported CH4 fluxes to the seasonal cycle of XCH4 in the four regions of interest (ROIs): Northeast China, Southeast China, Northwest India, and North Bangladesh. They reported that externally transported CH4 fluxes contributed more to the seasonal cycle of XCH4 than did locally emitted CH4 fluxes in Northeast China, Southeast China, and Northwest India, but the relative roles of these two CH4 fluxes were comparable in North Bangladesh2. Our study reported that the seasonal dynamics of XCH4 and paddy rice growth were consistent across the 0.5° gridcells with moderate to high proportions of rice paddy (area percentage >10% within gridcells)1. This discrepancy in the role of rice paddies in seasonal dynamics of XCH4 between Zeng et al.2 and our study1 can be attributed to three factors.

First, the area of the ROIs used in Zeng et al.2 (Fig. 1a) was substantially larger than that used in our study1. Larger ROIs have much lower proportions of rice paddy area (Fig. 1g–n). Statistically, average values over very large ROIs would dampen localized seasonal variations, which often leads to failure to identify hot spots within ROIs3. Second, the spatial resolution of the gridded data we used in our study1 was finer than that used by Zeng et al.2. The GHGF-Flux CH4 inversion used by Zeng et al.2 was carried out at 2° × 2.5° horizontal spatial resolution, which is much coarser than the spatial resolution of the XCH4 data from the SCIAMACHY sensors (0.5° × 0.5°) that comprised our ROIs1. Given that there are many land cover types in monsoon Asia, larger gridcells would have lower proportions of rice paddy area (Fig. 1g–n), and would thus diminish the local contribution of CH4 emission from rice paddy on the seasonal cycle of XCH4. As shown in Fig. 1a by Zeng et al.2, the relative contribution of locally emitted CH4 fluxes to the seasonal cycle of XCH4 increased with the proportion of rice paddy area within the ROIs. The North Bangladesh ROI is a good example. Rice paddy in Bangladesh accounts for about 68% of the country’s land area (Fig. 1e), and it occupies a large proportion (~22%) of the 2° × 2.5° gridcells in the ROI (Fig. 1m) compared to the gridcells in the other ROIs (Fig. 1k, l, n). Thus, the comparable relative contributions of local and external CH4 fluxes to the seasonal cycle of XCH4 in the North Bangladesh ROI (see Fig. 1a in Zeng et al.2) are likely driven in part by the region’s high rice paddy proportion. Third, the GHGF-Flux model used the CarbonTracker-CH4 emission from EDGAR 3.2FT2000 as prior CH4 emission estimates of rice paddy, enteric fermentation, and animal waste. The EDGAR dataset’s estimates of CH4 emissions from rice paddy are based on paddy rice area from agricultural statistics at various administrative levels4,5, which often cannot resolve the spatial distribution of paddy rice area at a 0.5° spatial resolution. The spatial heterogeneity of CH4 emission sources cannot be captured using larger ROIs, coarser gridcells, and inaccurate model inputs. In addition, XCH4 is theoretically calculated as the total CH4 across different altitudes. However, the SCIAMACHY XCH4 retrieval is mainly based on the short-wavelength infrared band (SWIR), which is more indicative of CH4 at lower altitudes down to the surface6.

Fig. 1: Potential effects of different sizes of regions of interest (ROIs) with varied footprints of rice paddies.

The red and blue ROIs are from our study1 and Zeng et al.2, respectively. The paddy rice maps were retrieved from MODIS data with the 500-m spatial resolution (a) and 0.5° spatial resolution (b) in monsoon Asia in 2010, respectively. Detailed spatial distributions of rice paddies in local regions labeled with blue rectangles and spatial resolutions of 500 m (cf), 0.5° (gj), and 2° × 2.5° (kn). The red and blue numbers show the mean of rice paddy area proportion in ROIs with red and blue color, respectively.

Zeng et al.2 further analyzed the seasonal dynamics of XCH4 from the four ROIs and four latitudinal zones (10° interval) that were centered on the four ROIs during 2003–2011 (see Fig. 1b by Zeng et al.2), and claimed that there were strong agreements between the ROIs and latitudinal zones. Unfortunately, the authors failed to recognize that the Southeast China ROI had very different seasonal dynamics between the ROI (two XCH4 peaks in one year) and latitudinal zonal XCH4 (one XCH4 peak in one year) (Fig. 1b by Zeng et al.2 and Fig. 2 here). The timing of the two XCH4 peaks in one year is actually related to the double paddy rice cropping system in South China (Supplementary Fig. 1), which we explained in our study1. This noticeable two-peak seasonal dynamic in the Southeast China ROI further highlights the importance of annual paddy rice maps at moderate spatial resolution (500 m) in understanding the seasonal dynamics of paddy rice CH4 emissions and XCH4.

Fig. 2: Monthly averaged XCH4 in the region of interest (ROI) of Southeast China and the latitudinal zone centered on the ROI according to Zeng et al.2.

a The MODIS-based paddy rice map at 0.5° resolution in monsoon Asia in 2010. The orange rectangle shows the latitudinal zone of 23°–33°N centered on the Southeast China ROI. The blue rectangle shows the boundary of the Southeast China ROI from Zeng et al.2. b Monthly averaged XCH4 in the ROI and the latitudinal zone according to Zeng et al.2. The regional mean in b is the averaged value of XCH4 in ROI, and the zonal mean in b is the averaged XCH4 over the latitudinal zone centered on the ROI, which is from Zeng et al.’s paper2.

Our study reported that there were consistent spatial distributions between XCH4 and paddy rice area across those 0.5° gridcells with relatively moderate to high proportions of rice paddy (area percentage >10% within gridcells)1. Zeng et al.2 analyzed the spatial distributions of XCH4 and EDGAR-based CH4 emissions from agricultural and non-agriculture sectors for all 1° gridcells in monsoon Asia in 2010 and reported that the spatial distribution of XCH4 correlated with CH4 emissions from both agricultural and non-agricultural sectors. We recognize that paddy rice area is one of many factors that affect the spatial distribution of XCH4 in dense rice paddy regions; however, EDGAR’s use of agricultural statistical data at administrative levels (e.g., national, state or province)4,5 precludes accurate resolution of the geographic (or spatial) distribution of different CH4 emission sources. Furthermore, the 1° gridcell analyses of the EDGAR data in Zeng et al.2 cannot reflect the spatial heterogeneity of CH4 emissions from different sources within the gridcells. Thus, the higher consistency between non-agricultural CH4 emissions and XCH4 reported in Zeng et al.2 does not refute our finding on the role of CH4 emission from rice paddies. The finer spatial resolution data of CH4 emissions from rice paddies could rather improve the EDGAR data, and thus improve our understanding of the relative role of agricultural and non-agricultural CH4 emissions in the spatial distribution of XCH4.

In summary, we recognize the importance of the GHGF-Flux model for CH4 flux inversion, atmospheric chemistry, atmospheric transport, and attribution of CH4 emissions to various sources. Together, the results from Zeng et al.2 using the GHGF-Flux model and our study1 based on higher resolution paddy rice maps and satellite observations highlight the importance of the high-resolution paddy rice maps to understanding the spatial distribution and seasonal dynamics of XCH4. Annual paddy rice maps at moderate and high spatial resolutions can be used to further improve CH4 emission estimates from rice paddies in the EDGAR dataset and to better understand the relationships between the spatial distribution and seasonal dynamics of XCH4 from the TROPOspheric Monitoring Instrument (TROPOMI, 7 × 7 km spatial resolution) and rice paddies in monsoon Asia.

Data availability

The paddy rice maps can be accessed by contacting Geli Zhang, Xiangming Xiao, or Jinwei Dong. All the relevant data from this study are also available from the corresponding authors upon request.

Code availability

The code used in this study can be obtained by contacting the corresponding authors.


  1. 1.

    Zhang, G. et al. Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia. Nat. Commun. 11, 554 (2020).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Zeng, Z.-C., Byrne, B., Gong, F.-Y., He, Z. & Lei, L. Correlation between paddy rice growth and satellite-observed methane column abundance does not imply causation. Nat. Commun. (2021).

  3. 3.

    Liu, J. et al. Response to Comment on “Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño”. Science 362, eaat1211 (2018).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Peng, S. S. et al. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmos. Chem. Phys. 16, 14545–14562 (2016).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Janssens-Maenhout, G. et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 11, 959–1002 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Hayashida, S. et al. Methane concentrations over Monsoon Asia as observed by SCIAMACHY: signals of methane emission from rice cultivation. Remote Sens. Environ. 139, 246–256 (2013).

    ADS  Article  Google Scholar 

Download references


This work was funded by research grants from the National Natural Science Foundation of China (41871349, 81961128002), and the U.S. National Science Foundation (1911955). We thank Qiang Zhang at China Agricultural University for preparing the figure for the Supplementary Information, and Sarah L. Xiao at the University of Oklahoma for language editing of the manuscript.

Author information




X.X., G.Z., J.D. and Y.Z. contributed to data analyses and writing the comments’ reply. X.X., G.Z., J.D., Y.Z., F.X., Y.Q., R.D. and B.M. all took part in the discussion of the reply.

Corresponding authors

Correspondence to Xiangming Xiao or Jinwei Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Communications thanks Hironori Arai, Dailiang Peng and other, anonymous, reviewers for their contributions to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Xiao, X., Dong, J. et al. Reply to: “Correlation between paddy rice growth and satellite-observed methane column abundance does not imply causation”. Nat Commun 12, 1189 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing