Abstract
Exotic spindependent interactions between fermions have recently attracted attention in relation to theories beyond the Standard Model. The exotic interactions can be mediated by hypothetical fundamental bosons which may explain several unsolved mysteries in physics. Here we expand this area of research by probing an exotic parityodd spin and velocitydependent interaction between the axialvector electron coupling and the vector nucleon coupling for polarized electrons. This experiment utilizes a highsensitivity atomic magnetometer, based on an optically polarized vapor that is a source of polarized electrons, and a solidstate mass containing unpolarized nucleons. The atomic magnetometer can detect an effective magnetic field induced by the exotic interaction between unpolarized nucleons and polarized electrons. We set an experimental limit on the electronnucleon coupling \(g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}} \, < \, 10^{  30}\) at the mediator boson mass below 10^{−4} eV, significantly improving the current limit by up to 17 orders of magnitude.
Introduction
The searches for the exotic spindependent interactions between fermions^{1} have recently attracted attention^{2}. To date, 15 possible interactions have been derived by considering the spins and the relative velocity of two interacting fermions^{1,3}. In recent theoretical literature, mediators of such interactions have been generically defined as WISPs (weakly interacting subeV particles)^{4} including the most plausible mediators, the axion and the hidden photon. The axion is a hypothetical spin0 pseudoscalar boson that can explain the puzzling strong chargeparity (CP) problem in the quantum chromodynamics (QCD)^{5,6,7} and is a theoretically wellmotivated candidate for dark matter in the Universe^{8,9}. The hidden photon^{10,11,12} is a hypothetical spin1 boson arising from the breaking of a U(1) gauge symmetry, which can be a dark matter candidate as well, indirectly interacting with ordinary particles^{13,14}. Detection of WISPs is challenging because they are only very weakly coupled to fermions to mediate interactions between the fermions. Recent WISPs searches, such as the Axion Dark Matter eXperiment (ADMX)^{15}, are reviewed in ref. ^{16}.
Searches for exotic interactions have been typically conducted by closely positioning two objects and using a sensitive detector such as a superconducting quantum interference device (SQUID)^{17}, electronspin polarized torsionpendulum^{18}, or precessing nuclear spins in nuclear magnetic resonance (NMR)^{19}. Recently, we have expanded this area of research using a highly sensitive noncryogenic atomic magnetometer based on an optically pumped alkalimetal atomic vapor^{20,21}. The atomic magnetometer operates in the spinexchange relaxationfree (SERF) regime in which the effects of spinexchange collisions on spin relaxation are tuned off, dramatically improving the sensitivity to the femtoTesla level^{22,23}. Our approach probes exotic interactions between optically polarized electrons in an atomic vapor and unpolarized or polarized particles of a solidstate mass in the vicinity of the atomic vapor.
Since the first parityodd interaction has been discovered in the weak interaction sector^{24,25}, various searches for parityodd interactions have been performed, for example, atomic parity nonconservation (PNC) experiments^{26} and electric dipole moment (EDM) experiments^{27,28}. The searches could be pivotal for developing theories beyond the Standard Model of particle physics. In the present study we investigate an exotic parityodd spin and velocitydependent interaction of electrons with axialvector electron coupling and vector nucleon coupling \(\left( {g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}}} \right)\)^{3}, where A, V, e, and N stand for the axialvector coupling, the vector coupling, the electron, and the nucleon, respectively. This interaction can be generated by massive spin1 boson exchange^{29}, for example, from spontaneous breaking with two or more Higgs doublets. Some experiments on the interaction of neutrons have been conducted using polarized neutrons in liquid ^{4}He^{30}, combining experimental constraints from other experiments^{31} and polarized ^{3}He coupling to the Earth^{32}. While the parityeven spin and velocitydependent interaction for electrons has been experimentally investigated^{20,33,34,35,36}, to the best of our knowledge, the parityodd spin and velocitydependent interaction of electrons has been explored by few laboratory experiments such as electronspin polarized torsionpendulum experiments^{33,34} using the Sun and the Moon as a unpolarized test mass.
In the following, we explore the parityodd spin and velocitydependent interaction of electrons using a SERF atomic magnetometer based on a similar experimental approach in refs. ^{20,21}. The experiment sets a limit on the electronnucleon coupling \(g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}} \, < \, 10^{  30}\) for the boson mass less than 10^{−4} eV, equivalent to the interaction range larger than 10^{−3} m. This improves the current limit by up to 17 orders of magnitude.
Results
Exotic parityodd spin and velocitydependent interaction
We investigated the interaction between polarized electrons and unpolarized nucleons based on a SERF atomic magnetometer:
where ℏ is Planck’s constant, \(\widehat {\mathbf{\sigma }}_i\) is the ith spin unit vector of the polarized electron, r is the separation vector in the direction between the polarized electron and the unpolarized nucleon, r = r, v is their relative velocity vector, and λ = ℏ(m_{b}c)^{−1} is the interaction range (or the boson Compton wavelength) with m_{b} being the boson mass and c being the speed of light in vacuum. \(g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}}\) is the interaction coupling assuming no difference between electronneutron and electronproton couplings, and ignoring electronelectron couplings. The interaction induces the energy shift ΔE of the polarized electrons of the alkalimetal atoms in a SERF atomic vapor, which can be recast as
where γ is the gyromagnetic ratio of the alkalimetal atoms and B_{eff} is an effective magnetic field at the location of the atomic vapor, produced by the interaction V. From Eqs. (1) and (2), the effective magnetic field is
This experiment is to detect the B_{eff} with a SERF atomic magnetometer.
The SERF atomic magnetometer contains two laser beams (for detail, see for example the description of a SERF magnetometer in ref. ^{37}). The circularly polarized pump laser beam serves to pump atomic spins into the stretched state, creating nearly 100% polarization. The linearly polarized probe laser beam serves to detect the spin projection along the probe beam. The nonzero spin projection results in the rotation of light polarization, due to the strong birefringence of the spinpolarized vapor, and is measured with a polarizing beam splitter and two photo detectors as a small difference in the balanced output. The interaction of an external magnetic field with the polarized atomic spins leads to a change in the orientations of the spins and hence in the observed light polarization rotation. Because Eq. (2) formally describes the interaction of electron spins with the effective magnetic field, the interaction V causes similar changes in the spin orientation as the ordinary field, and can be probed with the magnetometer^{20,21}.
Experimental details
We employed a commercial cmscale SERF magnetometer which is low cost, compact, and easy to operate^{38,39}. It is based on a rubidium (Rb) 3 × 3 × 3 mm^{3} atomic vapor cell with a buffer gas. In order to operate the magnetometer in the SERF regime, the Rb vapor was heated to ~160 °C, which supplies sufficiently large Rb density (~10^{13} Rb atoms) as the source of optically polarized electrons. Furthermore, the magnetometer was placed inside a ferrite cylindrical shield (OD = 18 cm, height H = 38 cm, material thickness t = 0.6 cm) with endcaps and a threelayer open μmetal coaxial cylinder (ID = 23 cm, OD = 29 cm, outer H = 69 cm) as shown in Fig. 1a. The magnetic shields sufficiently suppressed the external dc magnetic field and magnetic noise, but the residual fields inside the ferrite shield were compensated with three orthogonal coils [not shown in Fig. 1a]. The magnetometer was rigidly mounted inside the ferrite shield by a plastic holder.
For the source of unpolarized nucleons, we used a 2 × 2 × 2 cm^{3} nonmagnetic bismuth germanate insulator (BGO), which contains a high nucleon density of 4.3 × 10^{24} cm^{−3}. As shown in Fig. 1a, the BGO mass was connected to a stepper motor (LR43000 manufactured by Haydon Kerk Pittman), fixed on a threeaxis translation stage (Thorlabs PT3), through a 1.5 mlong rigid fiberglass G10 cylindrical rod. The motor was positioned away from the magnetic shields and was enclosed by a singlelayer open μmetal box to suppress magnetic noise arising from the motor operation [see Fig. 1b]. The translation stage precisely adjusted the position of the mass in the vicinity of the Rb vapor. In order to prevent the mass from oscillating due to the movement of the long G10 rod, a nonmagnetic air bushing (OAV0500IB) was closely mounted to the ferrite shield, providing an additional support of the G10 rod with nearly frictionless motion of the mass. To reduce systematic effects due to vibrations induced by the motor moving the mass, the frame holding both the atomic magnetometer and the magnetic shields was decoupled from the frame holding the moving mass, as indicated in Fig. 1a, b.
As illustrated in Fig. 1c, the relative velocity term in the interaction V was created by linearly moving the BGO mass along the zaxis with a constant velocity v next to the Rb vapor located in the magnetometer head. The standoff distance between the nearest surfaces of the mass and the vapor was set to 5 mm, limited by the location of the vapor. The Rb electron spins were oriented along the xaxis and the magnetometer was sensitive to the z component of a magnetic field with the intrinsic field noise level of 15 fT Hz^{−1/2}, at low frequency. According to Eq. (3), the B_{eff} is only along the zaxis in this configuration of the mass and the magnetometer because B_{eff} is proportional to v.
Main sources of the systematic effects in this experiment are magnetic impurities buried inside the BGO mass generating fields measured on the order of 10^{−11} T and drift in the magnetometer signal on the order of 10^{−10} T. To suppress the systematic effects, the mass movement was alternated to subtract the magnetometer signals between upward v and downward −v mass motions, where v = v. This technique was highly effective since the sign of B_{eff} is reversed for the opposite linear motions due to the single velocity term in Eq. (3), while the systematic effects are essentially the same^{20}.
In Fig. 2, we present the interaction potential, written as
as a function of the distance between the center of the BGO mass and the center of the Rb vapor cell, defined as Shift here, at different interaction ranges. The interaction potential was numerically calculated by a Monte Carlo integration^{20,21} which averaged the interaction potential P_{eff} over the both volumes of the mass and the vapor. This was done by randomly generating 2^{20} electronnucleon pairs inside the volumes, summing the potential P_{eff} between each pair based on Eq. (4) by assuming the interaction range, and then normalizing the resulting potential for the nucleon density of the mass. More details are described below. The velocity magnitude, v, was 15.38 mm s^{−1}, used in the present experiments. As shown in Fig. 2, the interaction potential gets weaker as the mass moves away from the vapor and drops more drastically for the smaller interaction range due to the term of e^{−r/λ} in Eq. (4). Since the interaction potential varies with the position of the mass with respect to the vapor, we selected one proper mass position near Shift = 0 in order to constrain the \(g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}}\).
Analysis
In the signal subtraction method to suppress the systematic effects, the BGO mass was extended along the z direction with the constant velocity of v = 15.38 mm s^{−1} for 0.325 s from the initial Shift of −1 mm to the final Shift of 4 mm, and then it was retracted toward the initial configuration with v = −15.38 mm s^{−1} for 0.325 s, as illustrated in Fig. 3a. The initial configuration was chosen because the sample holder contacted the head of the magnetometer when Shift < −1 mm. The motor was able to repeat this mass motion continuously, during which we recorded the magnetometer signals for 77 h using a 24bit analogtodigital converter (PXIe4497 provided by National Instruments) with a sampling rate of 1 kHz.
Figure 3b shows standard time traces of the magnetometer signal, which present two full cycles of the mass motion reversal. Here one cycle refers to one extension with v = 15.38 mm s^{−1} and one retraction with v = −15.38 mm s^{−1} of the mass. The motor provided a voltage output which allows us to distinguish the mass motion’s direction, as shown in Fig. 3c. This was also recorded simultaneously with the magnetometer signal. The rising and falling edges served as the reference points for each half cycle. The motor had a delay time of 0.05 s after each extension and retraction of the mass, necessary to reverse the mass motion’s direction, thus the time elapsed for one cycle was 0.75 s. As discussed above, to extract the magnitude of the effective magnetic field, B_{eff}, from the magnetometer signals, we selected the middle configuration of each motion which corresponds to Shift = 1.5 mm, as shown in Fig. 3a, equivalent to the data point at the first 50% of the data in each half cycle, as shown in Fig. 3b. However, instead of taking only one data point in each half cycle for the extraction of B_{eff}, we used the mean of three data points, i.e., the data point at the first 50% of the data ± the adjacent data points. The distance between data points is 15 μm.
The mean value in each half cycle can be modeled as
where the sign of + and − corresponds to the sign of the velocity, t is time, a_{0} is the dc offset field on the order of a few hundred pT, as shown in Fig. 3b, and the last three terms characterize the slow drifts in the magnetometer signal expanded in a polynomial function of time up to third order. These mainly arise from magnetometer electronics and temperature variations around the magnetometer. Note that a_{0} remains constant as the mass linear motion is reversed, unlike B_{eff}. The magnetometer drift is mostly of first order: however, higherorder drifts can exist in the magnetometer signal due to, for example, opening/closing the laboratory door and other doors nearby the laboratory, or moving magnetic objects around the experimental setup. The simple difference between the first and the second half cycle with the time period of the half cycle, T, results in
Since this computation removes only the a_{0} term, the remaining drift terms can add systematic effects to the extraction of B_{eff}. To this end, we used a more effective computation on the data which applies a [+1 −3 +3 −1] weighting to the mean value from each half cycle within two cycles^{20,40}:
This weighting computation effectively eliminates the dominant slow drift terms up to second order. The remaining third or higherorder drifts might become major systematic effects if the data is averaged for a long time and the statistical uncertainty is reduced. According to Eq. (7), the B_{eff} can be obtained by dividing the resulting value by a factor of 8 assuming that the remaining third order drift is negligible.
A histogram of B_{eff}, extracted with the weighting computation from the magnetometer signals collected for 77 h, is shown in Fig. 4. A fit with a Gaussian distribution to the histogram gives B_{eff} = (0.94 ± 2.15) × 10^{−16} T. According to Eq. (2), this equates to ΔE = (1.71 ± 3.90) × 10^{−20} eV with γ = 2π × 7.0 × 10^{9} Hz T^{−1}^{37}. The signal subtraction method together with the weighting computation suppresses the major systematic effects below the statistical sensitivity of 2.15 × 10^{−16} T.
To experimentally constrain the interaction V from our SERF magnetometerbased experiment, we performed a Monte Carlo integration for the interaction potential P_{eff}, as described above. Based on Eqs. (1) and (2), the experimental limit to \(g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}}\) was estimated from dividing the experimental sensitivity of ΔE of 3.90 × 10^{−20} eV by the interaction potential calculated at different interaction ranges^{20}. Figure 5 shows the experimental limit to \(g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}}\) in interaction ranges above 10^{−4} m (bottom axis), corresponding to the boson mass below 10^{−3} eV (top axis) with the data collection time of 77 h.
Discussion
Our experiment sets an experimental limit on the parityodd spin and velocitydependent interaction V for electrons in the boson mass ranges below 10^{−3} eV, which is essential for developing directions in WISPs searches. One great advantage in our experiment is that the boson mass range can be simultaneously scanned, unlike the resonant cavitybased WISPsearching experiments, such as ADMX, which require tuning experimental parameters for each axion mass under investigation. Using this experimental method, recently, we also set an experimental limit on the parityeven spin and velocitydependent interaction V_{4+5} between polarized electrons and unpolarized nucleons in the submeV range of the boson mass^{20}. These experimental results demonstrate the feasibility of our experimental approach using the SERF atomic magnetometer. Our experiments will play an important role in exploring the uninvestigated spindependent interactions for polarized electrons^{21}.
Further enhancement in the experimental sensitivity could be achievable. The SERF atomic magnetometer used in this work operates in a singlebeam configuration in which a single circularly polarized laser beam is used to pump and probe the Rb electron spins^{39}. The singlebeam configuration is suboptimal in terms of magnetic field sensitivity. For an improved design, the magnetometer would use an orthogonalbeam configuration in which the probe beam is perpendicular to the pump beam, and the laser beams’ wavelengths are individually optimized. This modification can improve the sensitivity to 1 fT Hz^{−1/2} immediately. Further work will bring the magnetometer close to the fundamental photon shot noise limit of subfemtoTesla to attoTesla^{41} by reducing the noise sources from laser frequency and intensity fluctuations and by using the hybrid optical pumping^{41}.
In conclusion, we explored the exotic parityodd spin and velocitydependent interaction V for polarized electrons based on an experimental approach utilizing a SERF atomic magnetometer. Our experiment sets an experimental limit on the interaction in the interaction range higher than 10^{−4} m corresponding to the boson mass lower than 10^{−3} eV.
Methods
Monte Carlo integration
The algorithm of the Monte Carlo integral is following:

(1)
2^{20} random pairs of points inside both the volumes of the BGO mass and the Rb vapor cell are generated;

(2)
An interaction range λ between 10^{14} to 10^{−16} m is assumed to calculate the interaction potential \(P_{{\mathrm{eff}}}^i\) between a randomly generated pair of points i,
$$P_{{\mathrm{eff}}}^i = \frac{\hbar }{{8\pi }}(2\widehat {\mathbf{\sigma }}_i \cdot {\mathbf{v}})\frac{{e^{  r_i/\lambda }}}{{r_i}};$$(8) 
(3)
All the contributions to the potential are summed and normalized to give the average interaction potential for the nucleon density of BGO mass N_{BGO}:
$$P_{{\mathrm{eff}}} = N_{{\mathrm{BGO}}}\frac{1}{{2^{20}}}\mathop {\sum}\limits_i^{2^{20}} {P_{{\mathrm{eff}}}^i} ;$$(9) 
(4)
The experimental limit to the coupling strength \(g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}}\) is derived by dividing the experimental sensitivity of the energy shift ΔE for Rb atoms by the calculated average interaction potential;

(5)
The steps from (1) to (4) are repeated with another given interaction range between 10^{−1} to 10^{−6} m.
The Monte Carlo error can be ignored because the error numerically decreases as \(1/\sqrt N\) where N is the number of random points, thus it is less than 1% with the 2^{20} random points.
SERF atomic magnetometer
A SERF atomic magnetometer employed for the experiments, manufactured by QuSpin Inc., is a compact, selfcontained unit with all the necessary optical components and can be readily operated using a control software. Practically, the SERF regime is achieved by operating in a nearzero magnetic field and by heating the Rb vapor; a SERF magnetometer is sensitive at low frequency below 100 Hz. It is mainly composed of a 3 mm cube ^{87}Rb vapor cell, a single semiconductor 795 nm laser for both optical pumping and probing, and silicon photodiodes^{39}. The dimensions of the magnetometer module are: length 8 cm, width 1.4 cm, and height 2.1 cm. The cell temperature is around 160 °C for sufficiently large Rb density. The action of the laser beam creates a large number of polarized Rb electron spins in the vapor cell and its intensity transmitted through the cell is detected using the photodiode. The output from the photodoide is an analogue voltage signal and it can be converted to a magnetic field signal by applying a known calibration field to the vapor cell. In order to reduce the effects of the laser noise due to intensity fluctuation, the magnetometer uses a modulating field at 926 Hz^{39}. The measured field at a certain low frequency is restored using a builtin lockin amplifier and a lowpass filter.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Code availability
The code of the Monte Carlo integral is available from the corresponding author upon reasonable request.
Additional information
Journal peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer review reports are available.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
 1.
Dobrescu, B. A. & Mocioiu, I. Spindependent macroscopic forces from new particle exchange. J. High. Energy Phys. 2006, 005 (2006).
 2.
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
 3.
Fadeev, P. et al. Revisiting 10 spindependent forces mediated by new bosons: Potentials in the coordinatespace representation for macroscopic and atomicscale experiments. Phys. Rev. A. 99, 022113 (2019).
 4.
Jaeckel, J. & Ringwald, A. The lowenergy frontier of particle physics. Annu. Rev. Nucl. Part. Sci. 60, 405–437 (2010).
 5.
Peccei, R. D. & Quinn, H. R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1443 (1977).
 6.
Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223–226 (1978).
 7.
Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–282 (1978).
 8.
Sikivie, P. Axion cosmology, in Axions: Theory, Cosmology, and Experimental Searches, edited by Kuster, M. Raffelt, G. and Beltráan B. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp. 19–50.
 9.
Duffy, L. D. & van Bibber, K. Axions as dark matter particles. New J. Phys. 11, 105008 (2009).
 10.
Holdom, B. Two U(1)’s and ε charge shifts. Phys. Lett. B 166, 196–198 (1986).
 11.
Appelquist, T., Dobrescu, B. A. & Hopper, A. R. Nonexotic neutral gauge bosons. Phys. Rev. D. 68, 035012 (2003).
 12.
Langacker, P. The physics of heavy Z gauge bosons. Rev. Mod. Phys. 81, 1199–1228 (2009).
 13.
Arias, P. et al. WISPy cold dark matter. J. Cosmol. Astropart. Phys. 06, 013 (2012).
 14.
R. Essig et al. Working Group Report: New Light Weakly Coupled Particles, Preprint at http://arxiv.org/abs/1311.0029 (2013).
 15.
Du, N. et al. (ADMX Collaboration), Search for invisible axion dark matter with the axion dark matter experiment. Phys. Rev. Lett. 120, 151301 (2018).
 16.
Patrignani, C. et al. (Particle Data Group), Review of Particle Physics. Chin. Phys. C. 40, 100001 (2016).
 17.
Hammond, G. D., Speake, C. C., Trenkel, C. & Patón, A. P. New constraints on shortrange forces coupling mass to intrinsic spin. Phys. Rev. Lett. 98, 081101 (2007).
 18.
Hoedl, S. A., Fleischer, F., Adelberger, E. G. & Heckel, B. R. Improved constraints on an axionmediated force. Phys. Rev. Lett. 106, 041801 (2011).
 19.
Chu, P.H. et al. Laboratory search for spindependent shortrange force from axionlike particles using optically polarized 3He gas. Phys. Rev. D. 87, 011105 (2013).
 20.
Kim, Y. J., Chu, P.H. & Savukov, I. Experimental constraint on an exotic spin and velocitydependent interaction in the submev range of axion mass with a spinexchange relaxationfree magnetometer. Phys. Rev. Lett. 121, 091802 (2018).
 21.
Chu, P.H., Kim, Y. J. & Savukov, I. Search for exotic spindependent interactions with a spinexchange relaxationfree magnetometer. Phys. Rev. D. 94, 036002 (2016).
 22.
Happer, W. & Tang, H. Spinexchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys. Rev. Lett. 31, 273–276 (1973).
 23.
Allred, J. C., Lyman, R. N., Kornack, T. W. & Romalis, M. V. Highsensitivity atomic magnetometer unaffected by spinexchange relaxation. Phys. Rev. Lett. 89, 130801 (2002).
 24.
Lee, T. D. & Yang, C. N. Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956).
 25.
Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D. & Hudson, R. P. Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957).
 26.
Dzuba, V. A., Flambaum, V. V. & Stadnik, Y. V. Probing lowmass vector bosons with parity nonconservation and nuclear anapole moment measurements in atoms and molecules. Phys. Rev. Lett. 119, 223201 (2017).
 27.
Purcell, E. M. & Ramsey, N. F. On the possibility of electric dipole moments for elementary particles and nuclei. Phys. Rev. 78, 807–807 (1950).
 28.
Chupp, T. E., Fierlinger, P., RamseyMusolf, M. J. & Singh, J. T. Electric dipole moments of atoms, molecules, nuclei, and particles. Rev. Mod. Phys. 91, 015001 (2019).
 29.
Fayet, P. Extra U(1)’s and new forces. Nucl. Phys. B 347, 743–768 (1990).
 30.
Yan, H. & Snow, W. M. New limit on possible longrange parityodd interactions of the neutron from neutronspin rotation in liquid ^{4}He. Phys. Rev. Lett. 110, 082003 (2013).
 31.
Adelberger, E. G. & Wagner, T. A. Improved limits on longrange parityodd interactions of the neutron. Phys. Rev. D. 88, 031101 (2013).
 32.
Yan, H. et al. Searching for new spin and velocitydependent interactions by spin relaxation of polarized ^{3}He gas. Phys. Rev. Lett. 115, 182001 (2015).
 33.
Heckel, B. R. et al. New CPviolation and preferredframe tests with polarized electrons. Phys. Rev. Lett. 97, 021603 (2006).
 34.
Heckel, B. R. et al. Preferredframe and CPviolation tests with polarized electrons. Phys. Rev. D. 78, 092006 (2008).
 35.
Ficek, F. et al. Constraints on exotic spindependent interactions between electrons from helium finestructure spectroscopy. Phys. Rev. A. 95, 032505 (2017).
 36.
Ficek, F. et al. Constraints on exotic spindependent interactions between matter and antimatter from antiprotonic helium spectroscopy. Phys. Rev. Lett. 120, 183002 (2018).
 37.
Karaulanov, T., Savukov, I. & Kim, Y. J. Spinexchange relaxationfree magnetometer with nearly parallel pump and probe beams. Meas. Sci. Technol. 27, 055002 (2016).
 38.
QuSpin Inc. Available at: http://www.quspin.com/.
 39.
Savukov, I., Kim, Y. J., Shah, V. & Boshier, M. G. Highsensitivity operation of singlebeam optically pumped magnetometer in a kHz frequency range. Meas. Sci. Technol. 28, 035104 (2017).
 40.
Kim, Y. J. et al. New experimental limit on the electric dipole moment of the electron in a paramagnetic insulator. Phys. Rev. D. 91, 102004 (2015).
 41.
Liu, J.H. et al. The polarization and the fundamental sensitivity of ^{39}K (^{133}Cs)^{85}Rb^{4}He hybrid optical pumping spin exchange relaxation free atomic magnetometers. Sci. Rep. 7, 6776 (2017).
Acknowledgements
The authors gratefully acknowledge this work was supported by the Los Alamos National Laboratory LDRD office through grant 20180129ER.
Author information
Affiliations
Contributions
Y.J.K. designed and carried out the experiments, and analyzed the data. P.H.C. performed the MonteCarlo simulation and estimated the sensitivity. I. S. provided expertise in atomic magnetometers. S.N. and Y.J.K. built the experimental setup. All authors contributed to the manuscript.
Competing interests
The authors declare no competing interests.
Corresponding authors
Correspondence to Young Jin Kim or PingHan Chu.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Received
Accepted
Published
DOI
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.