Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipid metabolism and neuromuscular junction as common pathways underlying the genetic basis of erectile dysfunction and obstructive sleep apnea

Abstract

Erectile dysfunction (ED) incidence is higher in patients with obstructive sleep apnea (OSA). Studies have suggested that ED and OSA may activate similar pathways; however, few have investigated the links between their underlying genotypic profiles. Therefore, we conducted an in-silico analysis to test whether ED and OSA share genetic variants of risk and to identify any molecular, cellular and biological interactions between them. Two gene lists were manually curated through a literature review based on a PUBMED search, which resulted in one gene list associated with ED (total of 205 genes) and the other with OSA (total of 2622 genes). Between those gene sets, 35 were common for both lists (Fisher exact test, p-value = 0.027). The Protein–protein interaction (PPI) analysis using the intersect list as input showed that 3 of them had direct interactions (LPL, DGKB and PLCB1). In addition, the biological function of the genes contained in the intersect list suggested that pathways related to lipid metabolism and the neuromuscular junction were commonly found in the genetic basis of ED and OSA. From the shared genes between both conditions, the biological pathways highlighted in this study may serve as preliminary findings for future functional investigations on OSA and ED association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The intersection of studied genes.
Fig. 2: The mainly enriched biological pathways of intersection list of genes.
Fig. 3: PPI network interaction between intersecting gene lists. Network showing 12 OSA and ED-associated genes (green) plus 9 interactors (purple).
Fig. 4: Mechanistic hypothesis.

Similar content being viewed by others

Data availability

Gene lists were generated from previous published genetic studies, which are fully described in Supplementary Table 1.

References

  1. Salonia A, Bettocchi C, Boeri L, Capogrosso P, Carvalho J, Cilesiz NC, et al. European Association of Urology guidelines on sexual and reproductive health-2021 update: male sexual dysfunction. Eur Urol. 2021;80:333–57.

    Article  PubMed  Google Scholar 

  2. Rosen RC, Fisher WA, Eardley I, Niederberger C, Nadel A, Sand M, et al. The multinational Men’s Attitudes to Life Events and Sexuality (MALES) study: I. Prevalence of erectile dysfunction and related health concerns in the general population. Curr Med Res Opin. 2004;20:607–17.

    Article  PubMed  Google Scholar 

  3. Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol. 1994;151:54–61.

    Article  CAS  PubMed  Google Scholar 

  4. Andersen ML, Santos-Silva R, Bittencourt LRA, Tufik S. Prevalence of erectile dysfunction complaints associated with sleep disturbances in Sao Paulo, Brazil: a population-based survey. Sleep Med. 2010;11:1019–24.

    Article  PubMed  Google Scholar 

  5. Corona G, Lee DM, Forti G, O’Connor DB, Maggi M, O’Neill TW, et al. Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). J Sex Med. 2010;7:1362–80.

    Article  PubMed  Google Scholar 

  6. Moreira ED, Abdo CH, Torres EB, Lôbo CF, Fittipaldi JA. Prevalence and correlates of erectile dysfunction: results of the Brazilian study of sexual behavior. Urology. 2001;58:583–8.

    Article  PubMed  Google Scholar 

  7. Laumann EO, Paik A, Rosen RC. Sexual dysfunction in the United States: prevalence and predictors. JAMA. 1999;281:537–44.

    Article  CAS  PubMed  Google Scholar 

  8. Krane RJ, Goldstein I, Saenz, de Tejada I. Impotence. N Engl J Med. 1989;321:1648–59.

    Article  CAS  PubMed  Google Scholar 

  9. Fugl-Meyer AR, Lodnert G, Bränholm IB, Fugl-Meyer KS. On life satisfaction in male erectile dysfunction. Int J Impot Res. 1997;9:141–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis RW, Fugl-Meyer KS, Corona G, Hayes RD, Laumann EO, Moreira ED, et al. Definitions/epidemiology/risk factors for sexual dysfunction. J Sex Med. 2010;7:1598–607.

    Article  PubMed  Google Scholar 

  11. Bacon CG, Mittleman MA, Kawachi I, Giovannucci E, Glasser DB, Rimm EB. Sexual function in men older than 50 years of age: results from the health professionals follow-up study. Ann Intern Med. 2003;139:161–8.

    Article  PubMed  Google Scholar 

  12. Fanfulla F, Malaguti S, Montagna T, Salvini S, Bruschi C, Crotti P, et al. Erectile dysfunction in men with obstructive sleep apnea: an early sign of nerve involvement. Sleep. 2000;23:775–81.

    Article  CAS  PubMed  Google Scholar 

  13. Feng C, Yang Y, Chen L, Guo R, Liu H, Li C, et al. Prevalence and characteristics of erectile dysfunction in obstructive sleep apnea patients. Front Endocrinol. 2022;13:812974.

    Article  Google Scholar 

  14. Tufik T, Santos-Silva R, Taddei JA, Bittencourt LRA. Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med. 2010. https://pubmed.ncbi.nlm.nih.gov/20362502/. Accessed 4 May 2022.

  15. Kyrkou K, Alevrakis E, Baou K, Alchanatis M, Poulopoulou C, Kanopoulos C, et al. Impaired human sexual and erectile function affecting semen quality, in obstructive sleep apnea: a pilot study. J Pers Med. 2022;12:980.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Andersen ML, Tufik S. A review of sleep disturbance and sexual function: the effect of sleep apnea on erectile function. Curr Sleep Med Rep. 2020;6:55–60.

    Article  Google Scholar 

  17. Quan SF, Wright R, Baldwin CM, Kaemingk KL, Goodwin JL, Kuo TF, et al. Obstructive sleep apnea-hypopnea and neurocognitive functioning in the Sleep Heart Health Study. Sleep Med. 2006;7:498–507.

    Article  PubMed  Google Scholar 

  18. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia-revisited-the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27–45.

    Article  PubMed  Google Scholar 

  19. Andersen ML, Martins PJF, D’Almeida V, Bignotto M, Tufik S. Endocrinological and catecholaminergic alterations during sleep deprivation and recovery in male rats. J Sleep Res. 2005;14:83–90.

    Article  PubMed  Google Scholar 

  20. Farias Tempaku P, Leite Santoro M, Bittencourt L, D’Almeida V, Iole Belangero S, Tufik S. Genome-wide association study reveals two novel risk alleles for incident obstructive sleep apnea in the EPISONO cohort. Sleep Med. 2020;66:24–32.

    Article  PubMed  Google Scholar 

  21. Lee Y-C, Wu W-J, Liu C-C, Wang C-J, Li W-M, Huang C-H, et al. The associations among eNOS G894T gene polymorphism, erectile dysfunction, and benign prostate hyperplasia-related lower urinary tract symptoms. J Sex Med. 2009;6:3158–65.

    Article  CAS  PubMed  Google Scholar 

  22. Oh JH, Kerns S, Ostrer H, Powell SN, Rosenstein B, Deasy JO. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci Rep. 2017;7:43381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kerns SL, Ostrer H, Stock R, Li W, Moore J, Pearlman A, et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2010;78:1292–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hotaling JM, Waggott DR, Goldberg J, Jarvik G, Paterson AD, Cleary PA, et al. Pilot genome-wide association search identifies potential loci for risk of erectile dysfunction in type 1 diabetes using the DCCT/EDIC study cohort. J Urol. 2012;188:514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bovijn J, Jackson L, Censin J, Chen C-Y, Laisk T, Laber S, et al. GWAS identifies risk locus for erectile dysfunction and implicates hypothalamic neurobiology and diabetes in etiology. Am J Hum Genet. 2019;104:157–63.

    Article  CAS  PubMed  Google Scholar 

  26. Ma K, Song P, Liu Z, Yang L, Wang L, Zhou J, et al. Genetic evidence suggests that depression increases the risk of erectile dysfunction: A Mendelian randomization study. Front Genet. 2022;13:1026227.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kazemi E, Zargooshi J, Kaboudi M, Heidari P, Kahrizi D, Mahaki B, et al. A genome-wide association study to identify candidate genes for erectile dysfunction. Brief Bioinform. 2021;22:bbaa338.

    Article  PubMed  Google Scholar 

  28. Jorgenson E, Matharu N, Palmer MR, Yin J, Shan J, Hoffmann TJ, et al. Genetic variation in the SIM1 locus is associated with erectile dysfunction. Proc Natl Acad Sci USA. 2018;115:11018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patel DP, Christensen MB, Hotaling JM, Pastuszak AW. Erectile dysfunction and Peyronie’s disease: genetic diseases? Eur Urol Focus. 2020;6:572–4.

    Article  PubMed  Google Scholar 

  30. Patel DP, Pastuszak AW, Hotaling JM. Genetics and erectile dysfunction: leveraging early foundations for new discoveries. Int J Impot Res. 2022;34:252–9.

    Article  PubMed  Google Scholar 

  31. Parish JM. Genetic and immunologic aspects of sleep and sleep disorders. Chest. 2013;143:1489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tanizawa K, Chin K. Genetic factors in sleep-disordered breathing. Respir Investig. 2018;56:111–9.

    Article  PubMed  Google Scholar 

  33. Chen H, Cade BE, Gleason KJ, Bjonnes AC, Stilp AM, Sofer T, et al. Multiethnic meta-analysis identifies RAI1 as a possible obstructive sleep apnea-related quantitative trait locus in men. Am J Respir Cell Mol Biol. 2018;58:391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mukherjee S, Saxena R, Palmer LJ. The genetics of obstructive sleep apnoea. Respirology. 2018;23:18–27.

    Article  PubMed  Google Scholar 

  35. Wang H, Cade BE, Sofer T, Sands SA, Chen H, Browning SR, et al. Admixture mapping identifies novel loci for obstructive sleep apnea in Hispanic/Latino Americans. Hum Mol Genet. 2019;28:675–87.

    Article  CAS  PubMed  Google Scholar 

  36. Relf BL, Larkin EK, De Torres C, Baur LA, Christodoulou J, Waters KA. Genome-wide linkage of obstructive sleep apnoea and high-density lipoprotein cholesterol in a Filipino family: bivariate linkage analysis of obstructive sleep apnoea. J Sleep Res. 2010;19:349–57.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baik I, Seo HS, Yoon D, Kim SH, Shin C. Associations of sleep apnea, NRG1 polymorphisms, alcohol consumption, and cerebral white matter hyperintensities: analysis with genome-wide association data. Sleep. 2015;38:1137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Zhang X, Lee J, Smelser D, Cade B, Chen H, et al. Genome-wide association study of neck circumference identifies sex-specific loci independent of generalized adiposity. Int J Obes. 2021;45:1532–41.

    Article  CAS  Google Scholar 

  39. Sharma MI, Sharma V, Kumar S, Rastogi G, Dutt P, et al. Empirical assessment of allele frequencies of genome wide association study variants associated with obstructive sleep apnea. Am J Transl Res. 2022;14:3464–71.

    PubMed  PubMed Central  Google Scholar 

  40. Chen Y-C, Chen K-D, Su M-C, Chin C-H, Chen C-J, Liou C-W, et al. Genome-wide gene expression array identifies novel genes related to disease severity and excessive daytime sleepiness in patients with obstructive sleep apnea. PLoS ONE. 2017;12:e0176575.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grilo A, Ruiz-Granados ES, Moreno-Rey C, Rivera JM, Ruiz A, Real LM, et al. Genetic analysis of candidate SNPs for metabolic syndrome in obstructive sleep apnea (OSA). Gene. 2013;521:150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Patel S, Nibbe R, Maxwell S, Chowdhury SA, Koyuturk M, et al. Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea. Pac Symp Biocomput. 2011:14–25. https://www.worldscientific.com/action/showCitFormats?doi=10.1142%2F9789814335058_0003&mobileUi=0.

  43. Chun S, Akle S, Teodosiadis A, Cade BE, Wang H, Sofer T, et al. Leveraging pleiotropy to discover and interpret GWAS results for sleep-associated traits. PLoS Genet. 2022;18:e1010557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Elgart M, Kurniansyah N, Spitzer BW, Wang H, Kim D, et al. Genetic determinants of cardiometabolic and pulmonary phenotypes and obstructive sleep apnoea in HCHS/SOL. EBioMedicine. 2022;84:104288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Leng Y, Tang H, Deng P, Wang J, Yuan H, et al. Assessment of the causal effects of obstructive sleep apnea on atrial fibrillation: a mendelian randomization study. Front Cardiovasc Med. 2022;9:843681.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Strausz S, Ruotsalainen S, Ollila HM, Karjalainen J, Kiiskinen T, Reeve M, et al. Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. Eur Respir J. 2021;57:2003091.

    Article  CAS  PubMed  Google Scholar 

  47. Veatch OJ, Bauer CR, Keenan BT, Josyula NS, Mazzotti DR, Bagai K, et al. Characterization of genetic and phenotypic heterogeneity of obstructive sleep apnea using electronic health records. BMC Med Genomics. 2020;13:105.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li J, Lv Q, Sun H, Yang Y, Jiao X, Yang S, et al. Combined association between ADIPOQ, PPARG, and TNF genes variants and obstructive sleep apnea in chinese han population. Nat Sci Sleep. 2022;14:363–72.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Quinlan CM, Chang X, March M, Mentch FD, Qu H-Q, Liu Y, et al. Identification of novel loci in obstructive sleep apnea in European American and African American children. Sleep. 2022:zsac182. https://academic.oup.com/sleep/advance-article/doi/10.1093/sleep/zsac182/6651377?login=false.

  50. Xu H, Liu F, Li Z, Li X, Liu Y, Li N, et al. Genome-wide association study of obstructive sleep apnea and objective sleep-related traits identifies novel risk loci in han chinese individuals. Am J Respir Crit Care Med. 2022;206:1534–45.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou T, Xie J, Wang X, Chen G, Wang Y, Liang T, et al. Causal association between whole-body water mass and sleep apnea: a Mendelian Randomization Study. Ann Am Thorac Soc. 2022;19:1913–9.

    Article  PubMed  Google Scholar 

  52. Shen L, Sinai M. GeneOverlap: test and visualize gene overlaps. R package version 1.36.0. 2023. https://doi.org/10.18129/B9.bioc.GeneOverlap.

  53. Martynowicz H, Poreba R, Wieczorek T, Domagala Z, Skomro R, Wojakowska A, et al. Sleep architecture and daytime sleepiness in patients with erectile dysfunction. Life. 2023;13:1541.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sewduth RN, Kovacic H, Jaspard-Vinassa B, Jecko V, Wavasseur T, Fritsch N, et al. PDZRN3 destabilizes endothelial cell-cell junctions through a PKCζ-containing polarity complex to increase vascular permeability. Sci Signal. 2017;10:eaag3209.

    Article  PubMed  Google Scholar 

  55. Lin D, Chun T-H, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol. 2016;119:8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li WJ, Wang H, Zhou J, Li B, Zhang J, Lu M, et al. P144, A TGF-β1 antagonist peptide, synergizes with sildenafil and enhances erectile response via amelioration of cavernosal fibrosis in diabetic rats. J Sex Med. 2013;10:2942–51.

    Article  CAS  PubMed  Google Scholar 

  57. Shin SH, Kim WJ, Choi MJ, Park J-M, Jin H-R, Yin GN, et al. Aberrant expression of Wnt family contributes to the pathogenesis of diabetes-induced erectile dysfunction. Andrology. 2014;2:107–16.

    Article  CAS  PubMed  Google Scholar 

  58. Urquidi V, Ashcroft SJ. A novel pancreatic beta-cell isoform of calcium/calmodulin-dependent protein kinase II (beta 3 isoform) contains a proline-rich tandem repeat in the association domain. FEBS Lett. 1995;358:23–6.

    Article  CAS  PubMed  Google Scholar 

  59. Tone D, Ode KL, Zhang Q, Fujishima H, Yamada RG, Nagashima Y, et al. Distinct phosphorylation states of mammalian CaMKIIβ control the induction and maintenance of sleep. PLoS Biol. 2022;20:e3001813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ban H-J, Kim SC, Seo J, Kang H-B, Choi JK. Genetic and metabolic characterization of insomnia. PLoS ONE. 2011;6:e18455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shin J, Kim D, Bianchi R, Wong RKS, Shin H-S. Genetic dissection of theta rhythm heterogeneity in mice. Proc Natl Acad Sci USA. 2005;102:18165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: structure, regulation and function. Mol Cell Biochem. 2004;259:197–209.

    Article  CAS  PubMed  Google Scholar 

  63. Hersch E, Huang J, Grider JR, Murthy KS. Gq/G13 signaling by ET-1 in smooth muscle: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB. Am J Physiol Cell Physiol. 2004;287:C1209–18.

    Article  CAS  PubMed  Google Scholar 

  64. Walsh MP. The Ayerst Award Lecture 1990. Calcium-dependent mechanisms of regulation of smooth muscle contraction. Biochem Cell Biol Biochim Biol Cell. 1991;69:771–800.

    Article  CAS  Google Scholar 

  65. Drager LF, Li J, Shin M-K, Reinke C, Aggarwal NR, Jun JC, et al. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. Eur Heart J. 2012;33:783–90.

    Article  CAS  PubMed  Google Scholar 

  66. Iesato K, Tatsumi K, Saibara T, Nakamura A, Terada J, Tada Y, et al. Decreased lipoprotein lipase in obstructive sleep apnea syndrome. Circ J. 2007;71:1293–8.

    Article  CAS  PubMed  Google Scholar 

  67. Fletcher EC. Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep. 2003;26:15–9.

    Article  PubMed  Google Scholar 

  68. Saenz de Tejada I, Moroukian P, Tessier J, Kim JJ, Goldstein I, Frohrib D. Trabecular smooth muscle modulates the capacitor function of the penis. Studies on a rabbit model. Am J Physiol. 1991;260:H1590–5.

    CAS  PubMed  Google Scholar 

  69. Christ GJ, Lerner SE, Kim DC, Melman A. Endothelin-1 as a putative modulator of erectile dysfunction: I. Characteristics of contraction of isolated corporal tissue strips. J Urol. 1995;153:1998–2003.

    Article  CAS  PubMed  Google Scholar 

  70. Sánchez A, Martínez P, Muñoz M, Benedito S, García-Sacristán A, Hernández M, et al. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: role of ET(A) and ET(B) receptors. Br J Pharmacol. 2014;171:5682–95.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Suzuki YJ, Jain V, Park A-M, Day RM. Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med. 2006;40:1683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayashi M, Fujimoto K, Urushibata K, Imamura H, Kinoshita O, Kubo K. Nocturnal oxygen desaturation as a predictive risk factor for coronary restenosis after coronary intervention. Circ J. 2005;69:1320–6.

    Article  PubMed  Google Scholar 

  73. Bai Y, Zhang L, Jiang Y, Ju J, Li G, Xu J, et al. Identification and functional verification of microRNAs in the obese rat with erectile dysfunction. Sex Med. 2017;5:e261–71.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wu Y-X, Yang C-T, Li N, Zheng X, Li X, Zhang H, et al. How does diabetes impair penile tissues during erectile dysfunction? Endocr Metab Immune Disord Drug Targets. 2020;20:1535–42.

    Article  CAS  PubMed  Google Scholar 

  75. Huo W, Hou Y, Li Y, Li H. Downregulated lncRNA-MIAT confers protection against erectile dysfunction by downregulating lipoprotein lipase via activation of miR-328a-5p in diabetic rats. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1226–40.

    Article  CAS  PubMed  Google Scholar 

  76. Kazemi E, Zargooshi J, Dehpahni MF, Mohammadi Motlagh H-R, Kaboudi M, Kahrizi D, et al. Androgen regulated protein and pyruvate dehydrogenase kinase 4 in severe erectile dysfunction: a gene expression analysis, and computational study of protein structure. Cell Mol Biol. 2021;67:89–94.

    Article  PubMed  Google Scholar 

  77. Kazemi E, Zargooshi J, Kaboudi M, Izadi F, Mohammadi Motlagh H-R, Kahrizi D, et al. Investigation of gene expression and genetic simultaneous control associated with erectile dysfunction and diabetes. Cell Mol Biol. 2021;67:195–200.

    Article  PubMed  Google Scholar 

  78. Goodarzi MO, Guo X, Taylor KD, Quiñones MJ, Saad MF, Yang H, et al. Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes. 2004;53:214–20.

    Article  CAS  PubMed  Google Scholar 

  79. Boerboom D, Kumar V, Boyer A, Wang Y, Lambrot R, Zhou X, et al. β-catenin stabilization in gonadotropes impairs FSH synthesis in male mice in vivo. Endocrinology. 2015;156:323–33.

    Article  PubMed  Google Scholar 

  80. Boyer A, Yeh JR, Zhang X, Paquet M, Gaudin A, Nagano MC, et al. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4. PLoS ONE. 2012;7:e29764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet. 2008;17:2949–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kajimoto M, Suzuki K, Ueda Y, Fujimoto K, Takeo T, Nakagata N, et al. Androgen/Wnt/β-catenin signal axis augments cell proliferation of the mouse erectile tissue, corpus cavernosum. Congenit Anom. 2022;62:123–33.

    Article  CAS  Google Scholar 

  83. De Young LX, Bella AJ, O’Gorman DB, Gan BS, Lim KB, Brock GB. Protein biomarker analysis of primary Peyronie’s disease cells. J Sex Med. 2010;7:99–106.

    Article  PubMed  Google Scholar 

  84. Aversa A, Basciani S, Visca P, Arizzi M, Gnessi L, Frajese G, et al. Platelet-derived growth factor (PDGF) and PDGF receptors in rat corpus cavernosum: changes in expression after transient in vivo hypoxia. J Endocrinol. 2001;170:395–402.

    Article  CAS  PubMed  Google Scholar 

  85. Christ GJ. Gap junctions and ion channels: relevance to erectile dysfunction. Int J Impot Res. 2000;12:S15–25.

    Article  PubMed  Google Scholar 

  86. Christ GJ, Lue T. Physiology and biochemistry of erections. Endocrine. 2004;23:93–100.

    Article  CAS  PubMed  Google Scholar 

  87. Molica F, Figueroa XF, Kwak BR, Isakson BE, Gibbins JM. Connexins and pannexins in vascular function and disease. Int J Mol Sci. 2018;19:1663.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Donahue HJ, Qu RW, Genetos DC. Joint diseases: from connexins to gap junctions. Nat Rev Rheumatol. 2017;14:42–51.

    Article  PubMed  Google Scholar 

  89. Wei Y, Wang Z, Wei L, Li S, Qiu X, Liu C. MicroRNA-874-3p promotes testosterone-induced granulosa cell apoptosis by suppressing HDAC1-mediated p53 deacetylation. Exp Ther Med. 2021;21:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen Y-C, Hsu P-Y, Chin C-H, Hsiao C-C, Liou C-W, Wang T-Y, et al. H3K23/H3K36 hypoacetylation and HDAC1 up-regulation are associated with adverse consequences in obstructive sleep apnea patients. Sci Rep. 2021;11:20697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Associação Fundo de Incentivo à Pesquisa and grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, recipients: LNGA: 2023/11995-5; MMO: 2021/09089-0; MLA: 2020/13467-8), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, recipient: MLA and LNGA).

Author information

Authors and Affiliations

Authors

Contributions

LNGA manually curated the gene lists. LNGA, MMO and LASC performed data analysis. MLA and ST supervised and provided funding to the study. MBV performed the literature review about erectile dysfunction. LNGA drafted the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Monica L. Andersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41443_2023_795_MOESM1_ESM.pdf

Supplementary Table 1. Lists of articles regarding Erectile Dysfunction (ED) and Obstructive Sleep Apnea traits (OSA) which were used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adami, L.N.G., Moysés-Oliveira, M., Souza-Cunha, L.A. et al. Lipid metabolism and neuromuscular junction as common pathways underlying the genetic basis of erectile dysfunction and obstructive sleep apnea. Int J Impot Res (2023). https://doi.org/10.1038/s41443-023-00795-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41443-023-00795-1

Search

Quick links