Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thyroid disorders and male sexual dysfunction

Abstract

Though early research suggested that thyroid hormones were not involved with the testes, male spermatogenesis, or erectile function, investigations on this topic over the past few decades have increased and shed new light. A literature review of studies conducted between 1963 and 2022 regarding male sexual dysfunction (SD) and thyroid disorders was performed to define the diagnostic consideration, pathophysiology, and management of SD secondary to thyroid dysregulation. This article provides evidence and interpretation of prior clinical and preclinical studies and contextualizes these studies for clinical practice. Clinical manifestations of SDs included erectile and ejaculatory dysfunction, impaired spermatogenesis, and disruption of the hypothalamic-pituitary-gonadal axis. Our aim of this communication was to perform a literature review detailing the impact of thyroid disorders on male SD. We hope to provide a framework for practicing urologists, endocrinologists, or general practitioners when evaluating patients with concurrent thyroid and male SD. It is important to recognize that thyroid disorders can be an important part of the pathophysiology of male SD in patients. Future research studies are needed to further elucidate the mechanisms involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

The data in this paper can be found by searching the listed references on PubMed.

References

  1. Gabrielson AT, Sartor RA, Hellstrom WJG. The impact of thyroid disease on sexual dysfunction in men and women. Sex Med Rev. 2019;7:57–70. https://doi.org/10.1016/j.sxmr.2018.05.002.

    Article  PubMed  Google Scholar 

  2. Jannini EA, Ulisse S, Armiento MD. Thyroid hormone and male gonadal function. Endocr Rev. 1995;16:443–59. https://doi.org/10.1210/edrv-16-4-443.

    Article  CAS  PubMed  Google Scholar 

  3. Corona G, Wu FCW, Forti G, Lee DM, O’Conner DB, O’Neil TW, et al. Thyroid hormones and male sexual function. Int J Androl. 2012;35:668–79. https://doi.org/10.1111/j.1365-2605.2012.01266.x.

    Article  CAS  PubMed  Google Scholar 

  4. Marques P, Skorupskaite K, Rozario KS, Anderson RA, George JT. Physiology of GnRH and gonadotropin secretion. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK279070/.

  5. Sadiq NM, Tadi P. Physiology, pituitary hormones. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK557556/.

  6. Vagenakis AG. Pituitary-thyroid interaction: effects of thyroid hormone, non thyroidal illness and various agents on TSH secretion. Acta Med Austriaca. 1988;15:52–6.

    PubMed  Google Scholar 

  7. Caraty A, Martin GB, Montgomery G. A new method for studying pituitary responsiveness in vivo using pulses of LH-RH analogue in ewes passively immunized against native LH-RH. Reprod Nutr Dev. 1984;24:439–48. https://doi.org/10.1051/rnd:19840409.

    Article  CAS  PubMed  Google Scholar 

  8. Huhtaniemi IT. LH and FSH receptor mutations and their effects on puberty. Horm Res. 2002;57:35–38. https://doi.org/10.1159/000058098.

    Article  CAS  PubMed  Google Scholar 

  9. Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol. 1998;9:411–6. https://doi.org/10.1006/scdb.1998.0203.

    Article  CAS  PubMed  Google Scholar 

  10. Rastrelli G, Corona G, Maggi M. Testosterone and sexual function in men. Maturitas. 2018;112:46–52. https://doi.org/10.1016/j.maturitas.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  11. Sengupta P, Dutta S, Karkada IR, Chinni SV. Endocrinopathies and male infertility. Life. 2021;12:10. https://doi.org/10.3390/life12010010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abalovich M, Levalle O, Hermes R, Scaglia H, Aranda C, Zylbersztein C, et al. Hypothalamic-pituitary-testicular axis and seminal parameters in hyperthyroid males. Thyroid. 1999;9:857–63. https://doi.org/10.1089/thy.1999.9.857.

    Article  CAS  PubMed  Google Scholar 

  13. Donnelly P, White C. Testicular dysfunction in men with primary hypothyroidism; reversal of hypogonadotrophic hypogonadism with replacement thyroxine. Clin Endocrinol. 2000;52:197–201. https://doi.org/10.1046/j.1365-2265.2000.00918.x.

    Article  CAS  Google Scholar 

  14. Oppenheimer JH, Schwartz HL, Surks MI. Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. J Endocrinol. 1974;95:897–903. https://doi.org/10.1210/endo-95-3-897.

    Article  CAS  Google Scholar 

  15. Barker SB, Klitgaard HM. Metabolism of tissues excised from thyroxine-injected rats. Am J Physiol. 1952;170:81–6. https://doi.org/10.1152/ajplegacy.1952.170.1.81.

    Article  CAS  PubMed  Google Scholar 

  16. Holsberger DR, Cooke PS. Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res. 2005;322:133–40. https://doi.org/10.1007/s00441-005-1082-z.

    Article  CAS  PubMed  Google Scholar 

  17. Sakai Y, Yamashina S, Furudate S. Developmental delay and unstable state of the testes in the rdw rat with congenital hypothyroidism. Dev Growth Differ. 2004;46:327–34. https://doi.org/10.1111/j.1440-169x.2004.00748.x.

    Article  PubMed  Google Scholar 

  18. Jannini EA, Dolci S, Ulisse S, Nikodem VM. Developmental regulation of the thyroid hormone receptor alpha 1 mRNA expression in the rat testis. Mol Endocrinol. 1994;8:89–96. https://doi.org/10.1210/mend.8.1.8152433.

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez A. Thyroid hormone role and economy in the developing testis. Vitam Horm. 2018;106:473–500. https://doi.org/10.1016/bs.vh.2017.06.005.

    Article  PubMed  Google Scholar 

  20. Maran RR, Sivakumar R, Arunakaran J, Ravisankar B, Ravichandran K, Sidharthan V, et al. Duration-dependent effect of transient neonatal hypothyroidism on sertoli and germ cell number, and plasma and testicular interstitial fluid androgen binding protein concentration. Endocr Res. 1999;25:323–40. https://doi.org/10.1080/07435809909066151.

    Article  CAS  PubMed  Google Scholar 

  21. Mendis-Handagama SM, Ariyaratne HB. Effects of hypothyroidism on anti-mullerian hormone expression in the prepubertal rat testis. Histol Histopathol. 2008;23:151–6. https://doi.org/10.14670/HH-23.151.

    Article  PubMed  Google Scholar 

  22. Sun Y, Yang W, Luo H, Wang X, Chen Z, Zhang J, et al. Thyroid hormone inhibits the proliferation of piglet Sertoli cell via PI3K signaling pathway. Theriogenology. 2015;83:86–94. https://doi.org/10.1016/j.theriogenology.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  23. Holsberger DR, Buchold GM, Leal MC, Kiesewetter SE, O’Brien DA, Hess RA, et al. Cell-cycle inhibitors p27Kip1 and p21cip1 regulate murine sertoli cell proliferation. Biol Reprod. 2005;72. https://doi.org/10.1095/biolreprod.105.040386.

  24. Fumel B, Guerquin MJ, Livera G, Staub C, Magistrini M, Gauthier C, et al. Thyroid hormone limits postnatal Sertoli cell proliferation in vivo by activation of its alpha1 isoform receptor (TRalpha1) present in these cells and by regulation of Cdk4/JunD/c-myc mRna levels in mice. Biol Reprod. 2012;87:16–9. https://doi.org/10.1095/biolreprod.111.098418.

    Article  CAS  PubMed  Google Scholar 

  25. Cardone A, Angelini F, Esposito T, Comitato R, Varriale B. The expression of androgen receptor messenger RNA is regulated by tri-iodothyronine in lizard testis. J Steroid Biochem Mol Biol. 2000;72:133–41. https://doi.org/10.1016/S0960-0760(00)00021-2.

    Article  CAS  PubMed  Google Scholar 

  26. Catalano S, Pezzi V, Chimento A, Giordano C, Carpino A, Young M, et al. Triiodothyronine decreases the activity of the proximal promoter (PII) of the aromatase gene in the mouse Sertoli cell line, TM4. Mol Endocrinol. 2003;17:923–34. https://doi.org/10.1210/me.2002-0102.

    Article  CAS  PubMed  Google Scholar 

  27. Rao JN, Liang JY, Chakraborti P, Feng P. Effect of thyroid hormone on the development and gene expression of hormone receptors in rat testes in vivo. J Endocrinol Invest. 2003;26:435–43. https://doi.org/10.1007/BF03345199.

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi K, Kubota H, Hojo R, Miyagawa M. Dose-dependent effects of perinatal hypothyroidism on postnatal testicular development in rat offspring. J Toxicol Sci. 2014;39:867–74. https://doi.org/10.2131/jts.39.867.

    Article  CAS  PubMed  Google Scholar 

  29. Lagu SK, Bhavsar NG, Sharma RK, Ramachandran AV. Neonatal hypothyroidism-induced changes in rat testis size, dependence on temperature. Neuro Endocrinol Lett. 2005;26:780–8.

    CAS  PubMed  Google Scholar 

  30. Souhila DS, Zohra HS, Kamel A, Hadj-Bekkouche F. Effects of thyroxine treatment during lactation on the testicular function of rats across different ages. Folia Histochem Cytobiol. 2013;51:107–14. https://doi.org/10.5603/FHC.2013.0017.

    Article  PubMed  Google Scholar 

  31. Marchlewska K, Kula K, Walczak-Jedrzejowska R, Oszukowska E, Orkisz S, Slowikowska-Hilczer J. Triiodothyronine modulates initiation of spermatogenesis in rats depending on treatment timing and blood level of the hormone. Mol Cell Endocrinol. 2011;341:25–34. https://doi.org/10.1016/j.mce.2011.04.022.

    Article  CAS  PubMed  Google Scholar 

  32. Faraone-Mennella MR, Ferone A, Marino L, Cardone A, Comitato R, Venditti P, et al. Poly(ADP-ribosyl)ation of proteins and germ cell development in hyperthyroid rat testes. Mol Cell Biochem. 2009;323:119–29. https://doi.org/10.1007/s11010-008-9970-7.

    Article  CAS  PubMed  Google Scholar 

  33. Sarkar D, Singh SK. Neonatal hypothyroidism affects testicular glucose homeostasis through increased oxidative stress in prepubertal mice: effects on GLUT3, GLUT8 and Cx43. J Androl. 2017;5:749–62. https://doi.org/10.1111/andr.12363.

    Article  CAS  Google Scholar 

  34. Fernández V, Videla LA. Hepatic glutathione biosynthetic capacity in hyperthyroid rats. Toxicol Lett. 1996;89:85–9. https://doi.org/10.1016/s0378-4274(96)03791-5.

    Article  PubMed  Google Scholar 

  35. Nikoobakht MR, Aloosh M, Nikoobakht N, Mehrsay AR, Biniaz F, Karjalian MA. The role of hypothyroidism in male infertility and erectile dysfunction. Urol J. 2012;9:405–9.

    PubMed  Google Scholar 

  36. Rehman R, Zafar A, Fatima SS, Mohib A, Sheikh A. Altered sperm parameters and subclinical hypothyroidism; a cross sectional study in Karachi, Pakistan. Int J Clin Pr. 2020;74:e13555. https://doi.org/10.1111/ijcp.13555.

    Article  CAS  Google Scholar 

  37. Zhao S, Tang L, Fu J, Yang Z, Su C, Rao M. Subclinical hypothyroidism and sperm DNA fragmentation: a cross-sectional study of 5401 men seeking infertility care. J Clin Endocrinol Metab. 2022;107:e4027–36. https://doi.org/10.1210/clinem/dgac458.

    Article  PubMed  Google Scholar 

  38. Rao M, Yang Z, Su C, Zhao Z, Wan R, Liu J, et al. Paternal subclinical hypothyroidism affects the clinical outcomes of in vitro fertilization/intracytoplasmic sperm injection. Thyroid. 2021;31:12–22. https://doi.org/10.1089/thy.2020.0154.

    Article  CAS  PubMed  Google Scholar 

  39. Rao M, Wang L, Yan G, Chen M, Tang L, Zhao S. Normal-range paternal serum-free thyroxine concentrations and outcomes of assisted reproductive technologies. Thyroid. 2022;32:705–13. https://doi.org/10.1089/thy.2022.0049.

    Article  CAS  PubMed  Google Scholar 

  40. La Vignera S, Vita R. Thyroid dysfunction and semen quality. Int J Immunopathol Pharm. 2018;32:2058738418775241. https://doi.org/10.1177/2058738418775241.

    Article  Google Scholar 

  41. Krassas GE, Pontikides N, Deligianni V, Miras K. A prospective controlled study of the impact of hyperthyroidism on reproductive function in males. J Clin Endocrinol Metab. 2002;87:3667–71. https://doi.org/10.1210/jcem.87.8.8714.

    Article  CAS  PubMed  Google Scholar 

  42. Veronelli A, Masu A, Ranieri R, Rognoni C, Laneri M, Pontiroli AE. Prevalence of erectile dysfunction in thyroid disorders: comparison with control subjects and with obese and diabetic patients. Int J Impot Res. 2006;18:111–4. https://doi.org/10.1038/sj.ijir.3901364.

    Article  CAS  PubMed  Google Scholar 

  43. Krassas GE, Tziomalos K, Papadopoulou F, Pontikides N, Perros P. Erectile dysfunction in patients with hyper- and hypothyroidism: how common and should we treat? J Clin Endocrinol Metab. 2008;93:1815–9. https://doi.org/10.1210/jc.2007-2259.

    Article  CAS  PubMed  Google Scholar 

  44. Carani C, Isidori AM, Granata A, Carosa E, Maggi M, Lenzi A, et al. Multicenter study on the prevalence of sexual symptoms in male hypo- and hyperthyroid patients. J Clin Endocrinol Metab. 2005;90:6472–9. https://doi.org/10.1210/jc.2005-1135.

    Article  CAS  PubMed  Google Scholar 

  45. Salvio G, Martino M, Giancola G, Arnaldi G, Balercia G. Hypothalamic–pituitary diseases and erectile dysfunction. J Clin Med. 2021;10:2551. https://doi.org/10.3390/jcm10122551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Esposito K, Giugliano D. Obesity, the metabolic syndrome, and sexual dysfunction in men. Clin Pharm Ther. 2011;90:169–73. https://doi.org/10.1038/clpt.2011.91.

    Article  CAS  Google Scholar 

  47. Seppet EK, Kaasik A, Minajeva A, Paju K, Ohisalo JJ, Vetter R, et al. Mechanisms of thyroid hormone control over sensitivity and maximal contractile responsiveness to β-adrenergic agonists in atria. Mol Cell Biochem. 1998;184:419–26. https://doi.org/10.1007/978-1-4615-5653-4_29.

    Article  CAS  PubMed  Google Scholar 

  48. Carosa E, Di Sante S, Rossi S, Castri A, D’Adamo F, Gravina GL, et al. Ontogenetic profile of the expression of thyroid hormone receptors in rat and human corpora cavernosa of the penis. J Sex Med Med. 2010;7:1381–90. https://doi.org/10.1111/j.1743-6109.2009.01701.x.

    Article  CAS  Google Scholar 

  49. Özdemirci S, Yildiz F, Utkan T, Ulak G, Cetinaslan B, Erden F, et al. Impaired neurogenic and endothelium-dependent relaxant responses of corpus cavernosum smooth muscle from hyperthyroid rabbits. Eur J Pharm. 2001;428:105–11. https://doi.org/10.1016/S0014-2999(01)01268-7.

    Article  Google Scholar 

  50. Corona G, Jannini EA, Vignozzi L, Rastrelli G, Maggi M. The hormonal control of ejaculation. Nat Rev Urol. 2012;9:508–19. https://doi.org/10.1038/nrurol.2012.147.

    Article  CAS  PubMed  Google Scholar 

  51. Cihan A, Demir O, Demir T, Aslan G, Comlekci A, Esen A. The relationship between premature ejaculation and hyperthyroidism. J Urol. 2009;181:1273–80. https://doi.org/10.1016/j.juro.2008.10.150.

    Article  PubMed  Google Scholar 

  52. Culha MG, Tuken M, Gonultas S, Cakir OO, Serefoglu EC. Frequency of etiological factors among patients with acquired premature ejaculation: prospective, observational, single-center study. Int J Impot Res. 2020;32:352–7. https://doi.org/10.1038/s41443-019-0188-x.

    Article  CAS  PubMed  Google Scholar 

  53. Canat L, Erbin A, Canat M, Dinek M, Caskurlu T. Assessment of hormonal activity in patients with premature ejaculation. Int Braz J Urol. 2017;43:311–6. https://doi.org/10.1590/S1677-5538.IBJU.2016.0064.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Waldinger MD, Quinn P, Dilleen M, Mundayat R, Schweitzer DH, Boolell M. A multinational population survey of intravaginal ejaculation latency time. J Sex Med. 2005;2:492–7. https://doi.org/10.1111/j.1743-6109.2005.00070.x.

    Article  PubMed  Google Scholar 

  55. Cihan A, Murat N, Demir O, Aslan G, Demir T, Gidener S, et al. An experimental approach to the interrelationship between hyperthyroidism and ejaculation latency time in male rats. J Urol. 2009;181:907–12. https://doi.org/10.1016/j.juro.2008.10.061.

    Article  PubMed  Google Scholar 

  56. Kravets I. Hyperthyroidism: diagnosis and treatment. Am Fam Physician. 2016;93:363–70.

    PubMed  Google Scholar 

  57. Biondi B, Cooper DS. Thyroid hormone therapy for hypothyroidism. Endocrine. 2019;66:18–26. https://doi.org/10.1007/s12020-019-02023-7.

    Article  CAS  PubMed  Google Scholar 

  58. Cannarella R, Calogero AE, Aversa A, Condorelli RA, La Vignera S. Is there a role for levo‐thyroxine for the treatment of arterial erectile dysfunction? The clinical relevance of the mean platelet volume. J Clin Med. 2020;9:742. https://doi.org/10.3390/jcm9030742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reid JR, Wheeler SF. Hyperthyroidism: diagnosis and treatment. Am Fam Physician. 2005;72:623–30.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Scott Bailey, PhD, Department of Urology, Tulane University School of Medicine, for editing and preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and/or designed the work that led to the submission, acquired data, and/or played an important role in interpreting the results: RM, DS, and WJGH. Drafted or revised the manuscript: RM, DS, and WJGH. Approved the final version: WJGH. Agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: WJGH.

Corresponding author

Correspondence to Wayne J. G. Hellstrom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morenas, R., Singh, D. & Hellstrom, W.J.G. Thyroid disorders and male sexual dysfunction. Int J Impot Res (2023). https://doi.org/10.1038/s41443-023-00768-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41443-023-00768-4

Search

Quick links