Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel method for hemodynamic analysis of penile erection

Abstract

Measurement of blood flow velocity through the cavernosal arteries via penile color Doppler ultrasound (PDUS) is the most common objective method for the assessment of erectile function. However, in some clinical cases, this method needs to be augmented via the invasive intracavernosal pressure (ICP) measurement, which is arguably a more direct index for erectile function. The aim of this study is to develop a lumped parameter model (LPM) of the penile circulation mechanism integrated to a pulsatile, patient-specific, bi-ventricular circulation system to estimate ICP values non-invasively. PDUS data obtained from four random patients with erectile dysfunction are used to develop patient-specific LPMs. Cardiac output is estimated from the body surface area. Systemic pressure is obtained by a sphygmomanometer. Through the appropriate parameter set determined by optimization, patient-specific ICP values are predicted with only using PDUS data and validated by pre- and post-papaverine injection cavernosometry measurements. The developed model predicts the ICP with an average error value of 3 mmHg for both phases. Penile size change during erection is predicted with a ~15% error, according to the clinical size measurements. The developed mathematical model has the potential to be used as an effective non-invasive tool in erectile function evaluation, expanding the existing clinical decision parameters significantly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mathematical networks to simulate the blood flow through the lumped elements.
Fig. 2: Schematic representation of the two-step particle swarm optimization algorithm of penile erection circulation system parameters.
Fig. 3: Measured PDUS and cavernosometry data.
Fig. 4: Sensitivites of the pressures and flow rates to the compliance and resistance lumped parameters.
Fig. 5: Waveform comparison of simulated and measured cavernosal artery flow after the papaverine injection.
Fig. 6: Change of the penile parameters during transition from flaccid to erect states.
Fig. 7: Pressure and flow waveforms of the systemic parameters and cavernosal arteries.

Similar content being viewed by others

References

  1. Feldman H, Goldstein I, Hatzichristou DG, Krane R, J.B. M. Impotence and ıts medical and psychosocial correlates: results of the Massachusetts male aging study. J Urol. 1994;151:54–61.

    Article  CAS  Google Scholar 

  2. Aytac IA, McKinlay JB, Krane R. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999;84:50–6.

    Article  Google Scholar 

  3. Kruyt R, AA G. Color Doppler analysis of penile arteries in impotence. Radiology. 1988;169:283.

    Article  CAS  Google Scholar 

  4. Bookstein JJ, Valji K, Parsons L, Kessler W. Penile pharmacocavernosography and cavernosometry in the evaluation of impotence. J Urol. 1987;137:772–6.

    Article  CAS  Google Scholar 

  5. Halls J, Bydawell G, Patel U. Erectile dysfunction: the role of penile Doppler ultrasound in diagnosis. Abdom Imaging. 2009;34:712–25.

    Article  Google Scholar 

  6. Fuselier HA, Allen JM, Annaloro A, Morgan JO. Incidence and simple management of priapism following dynamic infusion cavernosometry cavernosography. South Med J. 1993;86:1261–3.

    Article  Google Scholar 

  7. Kilic M, Serefoglu EC, Ozdemir AT, Balbay MD. The actual incidence of papaverine-induced priapism in patients with erectile dysfunction following penile colour Doppler ultrasonography. Andrologia. 2010;42:1–4.

    Article  CAS  Google Scholar 

  8. Connolly JA, Borirakchanyavat S, Lue TF. Ultrasound Evaluation of the Penis for Assessment of Impotence. J Clin Ultrasound. 1996;24:481–6.

    Article  CAS  Google Scholar 

  9. Sikka S, Hellstrom W, Brock G, Morales A. Standardization of Vascular Assessment of Erectile Dysfunction. J Sex Med. 2012;10:120–9.

    Article  Google Scholar 

  10. Teloken PE, Park K, Parker M, Guhring P, Narus J, Mulhall JP. The false diagnosis of venous leak: Prevalence and predictors. J Sex Med. 2011;8:2344–9.

    Article  Google Scholar 

  11. Borowitz E, Barnea O. Hemodynamic mechanisms of penile erection. IEEE Trans Biomed Eng. 2000;47:319–26.

    Article  CAS  Google Scholar 

  12. Barnea O, Gillon G. Cavernosometry: A theoretical analysis. Int J Impot Res. 2004;16:154–9.

    Article  CAS  Google Scholar 

  13. Gillon G, Barnea O. Erection mechanism of the penis: a model based analysis. J Urol. 2002;168:2711–5.

    Article  Google Scholar 

  14. Barnea O, Hayun S, Gillon G. A mathematical model of penile vascular dysfunction and its application to a new diagnostic technique. Ann N. Y Acad Sci. 2007;1101:439–52.

    Article  Google Scholar 

  15. Hoppensteadt FC, Peskin CS. The heart and circulation. In: Mathematics in medicine and the life sciences. New York: Springer Science; 1992. p. 105–39.

  16. Sundareswaran KS, Pekkan K, Dasi LP, Whitehead K, Sharma S, Kanter KR, et al. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am J Physiol Hear Circ Physiol. 2008;295:2427–35.

    Article  Google Scholar 

  17. Pekkan K, Frakes D, De Zelicourt D, Lucas CW, Parks WJ, Yoganathan AP. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model. ASAIO J. 2005;51:618–28.

    Article  Google Scholar 

  18. Yigit MB, Kowalski WJ, Hutchon DJR, Pekkan K. Transition from fetal to neonatal circulation: Modeling the effect of umbilical cord clamping. J Biomech. 2015;48:1662–70.

    Article  Google Scholar 

  19. Sagawa K, Lie RK, Schaefer J. Translation of Otto frank’s paper ‘Die Grundform des Arteriellen Pulses’ Zeitschrift für Biologie 37: 483-526 (1899). J Mol Cell Cardiol. 1990;22:253–4.

    Article  CAS  Google Scholar 

  20. Milišić V, Quarteroni A. Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM Math Model Numer Anal. 2004;38:613–32.

    Article  Google Scholar 

  21. Juillet B, Bos C, Gaudichon C, Tomé D, Fouillet H. Parameter estimation for linear compartmental models-a sensitivity analysis approach. Ann Biomed Eng. 2009;37:1028–42.

    Article  Google Scholar 

  22. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the Sixth International Symposium on Micro Machine and Human Science. p. 39–43.

  23. Kennedy J, Eberhart R. Particle swarm optimization. Proc. IEEE Int Conf. 1995;4:1942–8.

    Google Scholar 

  24. Eberhart R, Shi Y. Particle swarm optimization: developments, applications and resources. Proc 2001 Congr Evol Comput (IEEE Cat No01TH8546). 2002;1:81–6.

    Article  Google Scholar 

  25. MathWorks. Global Optimization Toolbox User’s Guide (R2018a). 2018.

  26. Luenberger DG. Least-squares estimation. In: Optimization by vector space methods. John Wiley & Sons; 1970. p. 78–102.

  27. Jegier W, Sekelj P, Auld PA, Simpson R, McGregor M. The relation between cardiac output and body size. Br Heart J. 1963;25:425–30.

    Article  CAS  Google Scholar 

  28. Rosen RC, Cappelleri JC, Smith MD, Lipsky J, Peñ BM. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot Res. 1999;11:319–26.

    Article  CAS  Google Scholar 

  29. Turunc T, Deveci S, Guvel S, Peskircioglu L. The assesment of Turkish validation with 5 question version of Iinternational index of erectile function (IIEF-5). Turkish. J Urol. 2007;33:45–9.

    Google Scholar 

  30. Moons K, Altman D, Reitsma J, Ioannidis J, Macaskill P, Steyerberg E et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.

  31. Chen J, Gefen A, Greenstein A, Matzkin H, Elad D. Predicting penile size during erection. Int J Impot Res. 2000;12:328–33.

    Article  CAS  Google Scholar 

  32. Nelson RP, Lue TF. Determination of erectile penile volume by ultrasonography. J Urol. 1989;141:1123–6.

    Article  CAS  Google Scholar 

  33. Shamloul R, Ghanem H. Erectile dysfunction. Lancet. 2013;381:153–65.

    Article  CAS  Google Scholar 

  34. Andersson K-E, Wagner G. Physiology of penile erection. Physiol Rev. 1995;75:191–218.

  35. Lue TF, Takamura T, Schmidt RA, Palubinskas AJ, Tanagho EA. Hemodynamics of Erection in the Monkey. J Urol. 1983;130:1237–41.

    Article  CAS  Google Scholar 

  36. McVeigh G, Allen P, Morgan D. Arterial compliance: a new measure of therapeutic efficacy. In: Kaplan NM, editor. Hypertension therapy annual. Taylor & Francis; 2002. p. 111–28.

  37. Kuo Y, Liu S, Chen J, Chang H, Tsai VFS, Hsieh J. Feasability of a novel audio-video sexual stimulation system: an adjunct to the use of penile duplex Doppler. Ultrasonography 2009;7:3979–83.

    Google Scholar 

  38. Lee B, Sikka S, Randrup E, Villemarette P, Baum N, Hower J, et al. Standardization of penile blood flow parameters in normal men using intracavernous prostaglandin E1 and visual sexual stimulation. J Urol. 1993;149:49–52.

    Article  CAS  Google Scholar 

  39. Mellinger B, Vaughan E Jr. Penile blood flow changes in the flaccid and erect state in potent young men measured by duplex scanning. J Urol. 1990;144:894–6.

    Article  CAS  Google Scholar 

  40. Speel TGW, Van Langen H, Wijkstra H, Meuleman EJH. Penile duplex pharmaco-ultrasonography revisited: revalidation of the parameters of the cavernous arterial response. J Urol. 2003;169:216–20.

    Article  CAS  Google Scholar 

  41. Chung E, De Young L, Brock GB. Penile duplex ultrasonography in men with Peyronie’s disease: is it veno-occlusive dysfunction or poor cavernosal arterial inflow that contributes to erectile dysfunction? J Sex Med. 2011;8:3446–51.

    Article  Google Scholar 

  42. Serefoglu EC, Trost L, Sikka SC, Hellstrom WJG. The direction and severity of penile curvature does not have an impact on concomitant vasculogenic erectile dysfunction in patients with Peyronie’s disease. Int J Impot Res. 2015;27:6–8.

    Article  CAS  Google Scholar 

  43. Serefoglu EC, Atmaca AF, Dogan B, Altinova S, Akbulut Z, Balbay MD. Problems in understanding the Turkish translation of the international index of erectile function. J Androl. 2008;29:369–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ege Can Serefoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, C., Erturk, H., Pekkan, K. et al. A novel method for hemodynamic analysis of penile erection. Int J Impot Res 34, 55–63 (2022). https://doi.org/10.1038/s41443-020-00362-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-020-00362-y

Search

Quick links