Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The beginning of a new era: treatment of erectile dysfunction by use of physical energies as an alternative to pharmaceuticals

Abstract

This introductory manuscript aims to familiarize the concept of the ability of certain forces or energies applied on the penis. This concept is described and discussed in more detail for three optional applicative energies; shock wave energy via mechano-transduction, ultrasound energy via its theoretical unique effect on the cellular membrane, specifically cyclic separation of the two phospholipid layers, creating biochemical, functional and structural tissue changes. Radio frequency energy via its heating effect is proven to induce immediate changes on collagen strucures and on realignment of collagen fibers, as well as induction of local vasodilation. Applying any of these energies on the erectile tissue may potentially affect biochemical processes, which through different mechanisms lead to a beneficial clinical effect on erectile function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johannes CB, Araujo AB, Feldman HA, Derby CA, Kleinman KP, McKinlay JB. Incidence of erectile dysfunction in men 40 to 69 years old: longitudinal results from the Massachusetts male aging study. J Urol. 2000;163:460–3.

    Article  CAS  PubMed  Google Scholar 

  2. Wessells H, Joyce GF, Wise M, Wilt TJ. Erectile dysfunction. J Urol. 2007;177:1675–81.

    PubMed  Google Scholar 

  3. Goldstein I, Lue TF, Padma-Nathan H, Rosen RC, Steers WD, Wicker PA. Oral sildenafil in the treatment of erectile dysfunction. N Engl J Med. 1998;338:1397–404.

    CAS  PubMed  Google Scholar 

  4. Goldenberg MM. Safety and efficacy of sildenafil citrate in the treatment of male erectile dysfunction. Clin Ther. 20:1033–48.

    CAS  PubMed  Google Scholar 

  5. Rubio-Aurioles E, Reyes LA, Borregales L, Cairoli C, Sorsaburu S. A 6 month, prospective, observational study of PDE5 inhibitor treatment persistence and adherence in Latin American men with erectile dysfunction. Curr Med Res Opin. 2013;29:695–706.

    CAS  PubMed  Google Scholar 

  6. Cairoli C, Reyes LA, Henneges C, Sorsaburu S. PDE5 inhibitor treatment persistence and adherence in Brazilian men: post-hoc analyses from a 6-month, prospective, observational study. Int braz j urol. 2014;40:390–9.

    PubMed  Google Scholar 

  7. Conaglen HM, Conaglen JV. Couples’ reasons for adherence to, or discontinuation of, PDE type 5 inhibitors for men with erectile dysfunction at 12 to 24‐month follow‐up after a 6‐month free trial. J Sex Med. 2012;9:857–65.

    PubMed  Google Scholar 

  8. Chung E, Wang J. A state-of-art review of low intensity extracorporeal shock wave therapy and lithotripter machines for the treatment of erectile dysfunction. Expert Rev Med Devices. 2017;14:929–34.

    CAS  PubMed  Google Scholar 

  9. Zou Z-J, Liang J-Y, Liu Z-H, Gao R, Lu Y-P. Low-intensity extracorporeal shock wave therapy for erectile dysfunction after radical prostatectomy: a review of preclinical studies. Int J Impot Res. 2018;30:1–7.

    CAS  PubMed  Google Scholar 

  10. Man L, Li G. Low-intensity extracorporeal shock wave therapy for erectile dysfunction: a systematic review and meta-analysis. Urology. 2018;119:97–103.

    PubMed  Google Scholar 

  11. Lu Z, Lin G, Reed-Maldonado A, Wang C, Lee Y-C, Lue TF. Low-intensity extracorporeal shock wave treatment improves erectile function: a systematic review and meta-analysis. Eur Urol. 2017;71:223–33.

    PubMed  Google Scholar 

  12. Kaiser F. External signals and internal oscillation dynamics: biophysical aspects and modelling approaches for interactions of weak electromagnetic fields at the cellular level. Bioelectrochemistry Bioenerg. 1996;41:3–18.

    CAS  Google Scholar 

  13. Blank M. Biological effects of environmental electromagnetic fields: molecular mechanisms. Biosystems. 1995;35:175–8.

    CAS  PubMed  Google Scholar 

  14. Evans DJ, Manwaring ML. Modeling the interaction of electric current and tissue: importance of accounting for time varying electric properties. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; Lyon, France, 2007. p. 1117–20.

  15. Borg E, Counter SA. The middle-ear muscles. Sci Am. 1989;261:74–80.

    CAS  PubMed  Google Scholar 

  16. WALD G. The receptors of human color vision. Science. 1964;145:1007–16.

    CAS  PubMed  Google Scholar 

  17. Holick MF. Vitamin D: a millenium perspective. J Cell Biochem. 2003;88:296–307.

    CAS  PubMed  Google Scholar 

  18. Holick MF. Sunlight, UV-radiation, vitamin D and skin cancer: how much sunlight do we need? In: Reichrath J, editor Sunlight, Vitamin D and Skin Cancer. Advances in Experimental Medicine and Biology, vol 624. New York: Springer New York; 2008. p. 1–15.

  19. Blackburn JA. Light. In: Blackburn JA, editor Modern Instrumentation for Scientists and Engineers. New York: Springer New York; 2001. p. 157–69.

    Google Scholar 

  20. Records RE. Physiology of the human eye and visual system. Harper & Row; Hagerstown, Maryland, 1979. p. 691.

  21. Pocock G, Richards CD, Richards DA. Human Physiology. Oxford: Oxford press; 2013. p. 926.

  22. Gessi S, Merighi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, et al. Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: the signaling pathway. J Cell Physiol. 2019; https://doi.org/10.1002/jcp.28149.

  23. Ebbesen F, Hansen TWR, Maisels MJ. Update on phototherapy in jaundiced neonates. Curr Pedia Rev. 2017;13:176–80.

    CAS  Google Scholar 

  24. Francisco C, de O, Beltrame T, Hughson RL, Milan-Mattos JC, Ferroli-Fabricio AM, et al. Effects of light-emitting diode therapy (LEDT) on cardiopulmonary and hemodynamic adjustments during aerobic exercise and glucose levels in patients with diabetes mellitus: a randomized, crossover, double-blind and placebo-controlled clinical trial. Complement Ther Med. 2019;42:178–83.

    PubMed  Google Scholar 

  25. Oh P-S, Jeong H-J. Therapeutic application of light emitting diode: photo-oncomic approach. J Photochem Photobio B Biol. 2019;192:1–7.

    CAS  Google Scholar 

  26. Sun Y-D, Zhang H, Liu J-Z, Xu H-R, Wu H-Y, Zhai H-Z, et al. Efficacy of radiofrequency ablation and microwave ablation in the treatment of thoracic cancer: a systematic review and meta-analysis. Thorac cancer. 2019;10:543–50.

    PubMed  PubMed Central  Google Scholar 

  27. Wang S, Manudhane A, Ezaldein HH, Scott JF. A review of the FDA’s 510(k) approvals process for electromagnetic devices used in body contouring. J Dermatol Treat. 2019;7:1–9.

    CAS  Google Scholar 

  28. Xiang J, Wang W, Jiang W, Qian Q. Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: a systematic review and meta-analysis of randomized controlled trials. J Rehabil Med. 2018;50:852–9.

    PubMed  Google Scholar 

  29. Dolibog P, Franek A, Brzezińska-Wcisło L, Dolibog P, Wróbel B, Arasiewicz H, et al. Shockwave therapy in selected soft tissue diseases: a literature review. J Wound Care. 2018;27:573–83.

    PubMed  Google Scholar 

  30. do Prado AD, Staub HL, Bisi MC, da Silveira IG, Mendonça JA, Polido-Pereira J, et al. Ultrasound and its clinical use in rheumatoid arthritis: where do we stand? Adv Rheumatol. 2018;58:19.

    PubMed  Google Scholar 

  31. Noori SA, Rasheed A, Aiyer R, Jung B, Bansal N, Chang K-V, et al. Therapeutic ultrasound for pain management in chronic low back pain and chronic neck pain: a systematic review. Pain Med. 2019; https://doi.org/10.1093/pm/pny287.

  32. Liu J, Zhou F, Li G-Y, Wang L, Li H-X, Bai G-Y, et al. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats. Int J Mol Sci. 2013;14:10661–73.

    PubMed  PubMed Central  Google Scholar 

  33. Qiu X, Lin G, Xin Z, Ferretti L, Zhang H, Lue TF, et al. Effects of low-energy shockwave therapy on the erectile function and tissue of a diabetic rat model. J Sex Med. 2013;10:738–46.

    CAS  PubMed  Google Scholar 

  34. Sankin GN, Zhou Y, Zhong P. Focusing of shock waves induced by optical breakdown in water. J Acoust Soc Am. 2008;123:4071–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaussy C, Schüller J, Schmiedt E, Brandl H, Jocham D, Liedl B. Extracorporeal shock-wave lithotripsy (ESWL) for treatment of urolithiasis. Urology. 1984;23 5 Spec No:59–66.

    CAS  PubMed  Google Scholar 

  36. Speed C. A systematic review of shockwave therapies in soft tissue conditions: focusing on the evidence. Br J Sports Med. 2014;48:1538–42.

    PubMed  Google Scholar 

  37. Haupt G1, Chvapil M. Effect of shock waves on the healing of partial-thickness wounds in piglets.J Surg Res. 1990;49:45–8.

    CAS  PubMed  Google Scholar 

  38. Wang C-J, Yang KD, Wang F-S, Hsu C-C, Chen H-H. Shock wave treatment shows dose-dependent enhancement of bone mass and bone strength after fracture of the femur. Bone. 2004;34:225–30.

    PubMed  Google Scholar 

  39. Wang C-J, Liu H-C, Fu T-H. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity. Arch Orthop Trauma Surg. 2007;127:137–42.

    PubMed  Google Scholar 

  40. Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, Köffel R, et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 2013;210:2597–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15:181–4.

    CAS  PubMed  Google Scholar 

  42. Wang C-J, Wang F-S, Yang KD, Weng L-H, Hsu C-C, Huang C-S, et al. Shock wave therapy induces neovascularization at the tendon–bone junction. A study in rabbits. J Orthop Res. 2003;21:984–9.

    PubMed  Google Scholar 

  43. Wang C-J, Huang H-Y, Pai C-H. Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs. J Foot Ankle Surg. 2002;41:16–22.

    CAS  PubMed  Google Scholar 

  44. Belcaro G, Cesarone MR, Dugall M, Di Renzo A, Errichi BM, Cacchio M, et al. Effects of shock waves on microcirculation, perfusion, and pain management in critical limb ischemia. Angiology. 2005;56:403–7.

    CAS  PubMed  Google Scholar 

  45. Ciampa AR, de Prati AC, Amelio E, Cavalieri E, Persichini T, Colasanti M, et al. Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS Lett. 2005;579:6839–45.

    CAS  PubMed  Google Scholar 

  46. Holfeld J, Tepeköylü C, Kozaryn R, Urbschat A, Zacharowski K, Grimm M, et al. Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via toll-like receptor 3 2014;37:65–70.

  47. Fu M, Sun C-K, Lin Y-C, Wang C-J, Wu C-J, Ko S-F. et al. Extracorporeal shock wave therapy reverses ischemia-related left ventricular dysfunction and remodeling: molecular-cellular and functional assessment. PLoS ONE. 2011;6:e24342

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang C-J. Extracorporeal shockwave therapy (ESWT) – First choice treatment of fracture non-unions? Int J Surg. 2015;24(Pt B):179–83.

    PubMed  Google Scholar 

  49. Zhang L, Fu X-B, Chen S, Zhao Z-B, Schmitz C, Weng C-S. Efficacy and safety of extracorporeal shock wave therapy for acute and chronic soft tissue wounds: a systematic review and meta-analysis. Int Wound J. 2018;15:590–9.

    PubMed  PubMed Central  Google Scholar 

  50. Omar MTA, Alghadir A, Al-Wahhabi KK, Al-Askar AB. Efficacy of shock wave therapy on chronic diabetic foot ulcer: a single-blinded randomized controlled clinical trial. Diabetes Res Clin Pract. 2014;106:548–54.

    PubMed  Google Scholar 

  51. Ottomann C, Stojadinovic A, Lavin PT, Gannon FH, Heggeness MH, Thiele R, et al. Prospective randomized phase II trial of accelerated reepithelialization of superficial second-degree burn wounds using extracorporeal shock wave therapy. Ann Surg. 2012;255:23–9.

    PubMed  Google Scholar 

  52. Schaden W, Thiele R, Kölpl C, Pusch M, Nissan A, Attinger CE, et al. Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res. 2007;143:1–12.

    PubMed  Google Scholar 

  53. Antonic V, Mittermayr R, Schaden W, Stojadinovic A. Evidence supporting extracorporeal shock wave therapy for acute and chronic soft tissue wounds. Wounds a Compend Clin Res Pract. 2011;23:204–15.

    Google Scholar 

  54. Nan N, Si D, Hu G. Nanoscale cavitation in perforation of cellular membrane by shock-wave induced nanobubble collapse. J Chem Phys. 2018;149:74902.

    Google Scholar 

  55. López-Marín LM, Millán-Chiu BE, Castaño-González K, Aceves C, Fernández F, Varela-Echavarría A, et al. Shock wave-induced damage and poration in eukaryotic cell membranes. J Membr Biol. 2017;250:41–52.

    PubMed  Google Scholar 

  56. Choi MJ, Kang G, Huh JS. Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device. Biomed Eng Lett. 2017;7:143–51.

    PubMed  PubMed Central  Google Scholar 

  57. Maisonhaute E, Prado C, White PC, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: shear stress in ultrasonic cleaning. Ultrason Sonochem. 2002;9:297–303.

    CAS  PubMed  Google Scholar 

  58. Mariotto S, Cavalieri E, Amelio E, Ciampa AR, de Prati AC, Marlinghaus E, et al. Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide. 2005;12:89–96.

    CAS  PubMed  Google Scholar 

  59. Gotte G, Amelio E, Russo S, Marlinghaus E, Musci G, Suzuki H. Short-time non-enzymatic nitric oxide synthesis from L-arginine and hydrogen peroxide induced by shock waves treatment. FEBS Lett. 2002;520:153–5.

    CAS  PubMed  Google Scholar 

  60. Ito K, Fukumoto Y, Shimokawa H. Extracorporeal shock wave therapy as a new and non-invasive angiogenic strategy. Tohoku J Exp Med. 2009;219:1–9.

    PubMed  Google Scholar 

  61. Nishida T, Shimokawa H, Oi K, Tatewaki H, Uwatoku T, Abe K, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation. 2004;110:3055–61.

    PubMed  Google Scholar 

  62. Lai J-P, Wang F-S, Hung C-M, Wang C-J, Huang C-J, Kuo Y-R. Extracorporeal shock wave accelerates consolidation in distraction osteogenesis of the rat mandible. J Trauma Inj Infect Crit Care. 2010;69:1252–8.

    Google Scholar 

  63. Zimpfer D, Aharinejad S, Holfeld J, Thomas A, Dumfarth J, Rosenhek R, et al. Direct epicardial shock wave therapy improves ventricular function and induces angiogenesis in ischemic heart failure. J Thorac Cardiovasc Surg. 2009;137:963–70.

    PubMed  Google Scholar 

  64. Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg. 2011;253:1024–32.

    PubMed  Google Scholar 

  65. Peng YZ, Zheng K, Yang P, Wang Y, Li RJ, Li L, et al. Shock wave treatment enhances endothelial proliferation via autocrine vascular endothelial growth factor. Genet Mol Res. 2015;14:19203–10.

    CAS  PubMed  Google Scholar 

  66. Hatanaka K, Ito K, Shindo T, Kagaya Y, Ogata T, Eguchi K, et al. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction. Am J Physiol Physiol. 2016;311:C378–85.

    Google Scholar 

  67. Yoshida M, Nakamichi T, Mori T, Ito K, Shimokawa H, Ito S. Low-energy extracorporeal shock wave ameliorates ischemic acute kidney injury in rats. Clin Exp Nephrol. 2019;23:597–605.

    PubMed  Google Scholar 

  68. Liu T, Shindel AW, Lin G, Lue TF. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int J Impot Res. 2019; https://www.nature.com/articles/s41443-019-0113-3.

  69. Ma H-Z, Zeng B-F, Li X-L. Upregulation of VEGF in subchondral bone of necrotic femoral heads in rabbits with use of extracorporeal shock waves. Calcif Tissue Int. 2007;81:124–31.

    CAS  PubMed  Google Scholar 

  70. Yip H-K, Chang L-T, Sun C-K, Youssef AA, Sheu J-J, Wang C-J. Shock wave therapy applied to rat bone marrow-derived mononuclear cells enhances formation of cells stained positive for CD31 and vascular endothelial growth factor. Circ J. 2008;72:150–6.

    CAS  PubMed  Google Scholar 

  71. Lin G, Reed-Maldonado AB, Wang B, Lee Y, Zhou J, Lu Z, et al. In situ activation of penile progenitor cells with low-intensity extracorporeal shockwave therapy. J Sex Med. 2017;14:493–501.

    PubMed  Google Scholar 

  72. Tepeköylü C, Lobenwein D, Blunder S, Kozaryn R, Dietl M, Ritschl P, et al. Alteration of inflammatory response by shock wave therapy leads to reduced calcification of decellularized aortic xenografts in mice†. Eur J Cardio-Thorac Surg. 2015;47:e80–90.

    Google Scholar 

  73. Davis TA, Stojadinovic A, Anam K, Amare M, Naik S, Peoples GE, et al. Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury. Int Wound J. 2009;6:11–21.

    PubMed  Google Scholar 

  74. Vardi Y, Appel B, Jacob G, Massarwi O, Gruenwald I. Can low-intensity extracorporeal shockwave therapy improve erectile function? A 6-month follow-up pilot study in patients with organic erectile dysfunction. Eur Urol. 2010;58:243–8.

    PubMed  Google Scholar 

  75. Vardi Y, Appel B, Kilchevsky A, Gruenwald I. Does low intensity extracorporeal shock wave therapy have a physiological effect on erectile function? Short-term results of a randomized, double-blind, sham controlled study. J Urol. 2012;187:1769–75.

    PubMed  Google Scholar 

  76. Kitrey ND, Gruenwald I, Appel B, Shechter A, Massarwa O, Vardi Y. Penile low intensity shock wave treatment is able to shift PDE5i nonresponders to responders: a double-blind, sham controlled study. J Urol. 2016;195:1550–5.

    PubMed  Google Scholar 

  77. Gruenwald I, Appel B, Vardi Y. Low‐intensity extracorporeal shock wave therapy—a novel effective treatment for erectile dysfunction in severe Ed patients who respond poorly to PDE5 inhibitor therapy. J Sex Med. 2012;9:259–64.

    PubMed  Google Scholar 

  78. Gruenwald I, Appel B, Kitrey ND, Vardi Y. Shockwave treatment of erectile dysfunction. Ther Adv Urol. 2013;5:95–9.

    PubMed  PubMed Central  Google Scholar 

  79. Kalyvianakis D, Hatzichristou D. Low-intensity shockwave therapy improves hemodynamic parameters in patients with vasculogenic erectile dysfunction: a triplex ultrasonography-based sham-controlled trial. J Sex Med. 2017;14:891–7.

    PubMed  Google Scholar 

  80. Srini VS, Reddy RK, Shultz T, Denes B. Low intensity extracorporeal shockwave therapy for erectile dysfunction: a study in an Indian population. Can J Urol. 2015;22:7614–22.

    PubMed  Google Scholar 

  81. Sokolakis I, Dimitriadis F, Psalla D, Karakiulakis G, Kalyvianakis D, Hatzichristou D. Effects of low-intensity shock wave therapy (LiST) on the erectile tissue of naturally aged rats. Int J Impot Res. 2018; https://www.nature.com/articles/s41443-018-0064-0.

  82. Assaly-Kaddoum R, Giuliano F, Laurin M, Gorny D, Kergoat M, Bernabé J, et al. Low intensity extracorporeal shock wave therapy improves erectile function in a model of type II diabetes independently of NO/cGMP pathway. J Urol. 2016;196:950–6.

    PubMed  Google Scholar 

  83. Qiu X, Lin G, Xin Z, Ferretti L, Zhang H, Lue TF, et al. Effects of low‐energy shockwave therapy on the erectile function and tissue of a diabetic rat model. J Sex Med. 2013;10:738–46.

    CAS  PubMed  Google Scholar 

  84. Kimmel E, Krasovitski B, Hoogi A, Razansky D, Adam D. Subharmonic response of encapsulated microbubbles: conditions for existence and amplification. Ultrasound Med Biol. 2007;33:1767–76.

    PubMed  Google Scholar 

  85. Navot N, Kimmel E, Avtalion RR. Immunisation of fish by bath immersion using ultrasound. Dev Biol (Basel). 2005;121:135–42.

    CAS  Google Scholar 

  86. Hancock HA, Smith LH, Cuesta J, Durrani AK, Angstadt M, Palmeri ML, et al. Investigations into pulsed high-intensity focused ultrasound–enhanced delivery: preliminary evidence for a novel mechanism. Ultrasound Med Biol. 2009;35:1722–36.

    PubMed  PubMed Central  Google Scholar 

  87. Or M, Kimmel E. Modeling linear vibration of cell nucleus in low intensity ultrasound field. Ultrasound Med Biol. 2009;35:1015–25.

    PubMed  Google Scholar 

  88. Mizrahi N, Seliktar D, Kimmel E. Ultrasound-induced angiogenic response in endothelial cells. Ultrasound Med Biol. 2007;33:1818–29.

    PubMed  Google Scholar 

  89. Krasovitski B, Kislev H, Kimmel E. Modeling photothermal and acoustical induced microbubble generation and growth. Ultrasonics. 2007;47:90–101.

    CAS  PubMed  Google Scholar 

  90. Krasovitski B, Frenkel V, Shoham S, Kimmel E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci USA. 2011;108:3258–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wrenn SP, Dicker SM, Small EF, Dan NR, Mleczko M, Schmitz G, et al. Bursting bubbles and bilayers. Theranostics. 2012;2:1140–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Naor O, Hertzberg Y, Zemel E, Kimmel E, Shoham S. Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis. J Neural Eng. 2012;9:26006.

    Google Scholar 

  93. Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, et al. Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter. 2012;8:2438.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tatli S, Tapan U, Morrison PR, Silverman SG. Radiofrequency ablation: technique and clinical applications. Diagn Inter Radiol. 2011;18:508–16.

    Google Scholar 

  95. Guo L, Kubat NJ, Isenberg RA. Pulsed radio frequency energy (PRFE) use in human medical applications. Electro Biol Med. 2011;30:21–45.

    Google Scholar 

  96. Ihnát P, Ihnát Rudinská L, Zonča P. Radiofrequency energy in surgery: state of the art. Surg Today. 2014;44:985–91.

    PubMed  Google Scholar 

  97. Wu DC, Liolios A, Mahoney L, Guiha I, Goldman MP. Subdermal radiofrequency for skin tightening of the posterior upper arms. Dermatol Surg. 2016;42:1089–93.

    CAS  PubMed  Google Scholar 

  98. Harth Y. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency. J Cosmet Dermatol. 2015;14:70–5.

    PubMed  Google Scholar 

  99. Guo J, Chang C, Li W. The role of secreted heat shock protein-90 (Hsp90) in wound healing—how could it shape future therapeutics? Expert Rev Proteom. 2017;14:665–75.

    CAS  Google Scholar 

  100. Ohtani S, Ushiyama A, Maeda M, Hattori K, Kunugita N, Wang J, et al. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats. J Toxicol Sci. 2016;41:655–66.

    CAS  PubMed  Google Scholar 

  101. Ishikawa Y, Holden P, Bächinger HP. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J Biol Chem. 2017;292:17216–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nagata K. Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol. 1998;16:379–86.

    CAS  PubMed  Google Scholar 

  103. Royo de la Torre J, Moreno-Moraga J, Muñoz E, Cornejo Navarro P. Multisource, phase-controlled radiofrequency for treatment of skin laxity: correlation between clinical and in-vivo confocal microscopy results and real-time thermal changes. J Clin Aesthet Dermatol. 2011;4:28–35.

    PubMed  PubMed Central  Google Scholar 

  104. Brock G, Hsu GL, Nunes L, von Heyden B, Lue TF. The anatomy of the tunica albuginea in the normal penis and Peyronie’s disease. J Urol. 1997;157:276–81.

    CAS  PubMed  Google Scholar 

  105. Hsieh C-H, Huang Y-P, Tsai M-H, Chen H-S, Huang P-C, Lin C-W, et al. Tunical outer layer plays an essential role in penile veno-occlusive mechanism evidenced from electrocautery effects to the corpora cavernosa in defrosted human cadavers. Urology. 2015;86:1129–36.

    PubMed  Google Scholar 

  106. Alexiades M. Device-based treatment for vaginal wellness. Semin Cutan Med Surg. 2018;37:226–32.

    PubMed  Google Scholar 

  107. Tadir Y, Gaspar A, Lev-Sagie A, Alexiades M, Alinsod R, Bader A, et al. Light and energy based therapeutics for genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med. 2017;49:137–59.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Gruenwald.

Ethics declarations

Conflict of interest

I.G. has performed research for Medispec and Ohhmed in a public hospital without any financial attachments. A.S. is the CEO of Medispec Ltd. T.S. is an employee of Medispec Ltd. D.L. is the CEO of Ohhmed. The remaining author declares that the author has no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruenwald, I., Spector, A., Shultz, T. et al. The beginning of a new era: treatment of erectile dysfunction by use of physical energies as an alternative to pharmaceuticals. Int J Impot Res 31, 155–161 (2019). https://doi.org/10.1038/s41443-019-0142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-019-0142-y

This article is cited by

Search

Quick links