Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Selective venous sampling for secondary hypertension

Abstract

Selective venous sampling (SVS), an invasive radiographic procedure that depends on contrast media, holds a unique role in diagnosing and guiding the treatment of certain types of secondary hypertension, particularly in patients who may be candidates for curative surgery. The adrenal venous sampling (AVS), in particular, is established as the gold standard for localizing and subtyping primary aldosteronism (PA). Throughout decades of clinical practice, AVS could be applied not only to PA but also to other endocrine diseases, such as adrenal Cushing syndrome (ACS) and Pheochromocytomas (PCCs). Notably, the application of AVS in ACS and PCCs remains less recognized compared to PA, with the low success rate of catheterization, the controversy of results interpretation, and the absence of a standardized protocol. Additionally, the AVS procedure necessitates enhancements to boost its success rate, with several helpful but imperfect methods emerging, yet continued exploration remains essential. We also observed renal venous sampling (RVS), an operation akin to AVS in principle, serves as an effective means of diagnosing renin-dependent hypertension, aiding in the identification of precise sources of renin excess and helping the selection of surgical candidates with renin angiotensin aldosterone system (RAAS) abnormal activation. Nonetheless, further basic and clinical research is needed.

Selective venous sampling (SVS) can be used in identifying cases of secondary hypertension that are curable by surgical intervention. Adrenal venous sampling (AVS) and aldosterone measurement for classificatory diagnosis of primary aldosteronism (PA) are established worldwide. While its primary application is for PA, AVS also holds the potential for diagnosing other endocrine disorders, including adrenal Cushing’s syndrome (ACS) and pheochromocytomas (PCCs) through the measurements of cortisol and catecholamine respectively. In addition, renal venous sampling and renin measurement can help to diagnose renovascular hypertension and reninoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carey RM, Whelton PK. Prevention, detection, evaluation, and management of high blood pressure in adults: Synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline. Ann Intern Med. 2018;168:351–8.

    Article  PubMed  Google Scholar 

  2. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  3. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57.

    Article  CAS  PubMed  Google Scholar 

  4. England RW, Geer EB, Deipolyi AR. Role of venous sampling in the diagnosis of endocrine disorders. J Clin Med. 2018;7:114.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tziomalos K. Secondary hypertension: novel insights. Curr Hypertens Rev. 2020;16:11.

    Article  PubMed  Google Scholar 

  6. Rossi GP. Primary Aldosteronism: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74:2799–811.

    Article  CAS  PubMed  Google Scholar 

  7. Melby JC, Spark RF, Dale SL, Egdahl RH, Kahn PC. Diagnosis and localization of aldosterone-producing adenomas by adrenal-vein catheterization. N. Engl J Med. 1967;277:1050–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ohno Y, Naruse M, Beuschlein F, Schreiner F, Parasiliti-Caprino M, Deinum J, et al. Adrenal venous sampling-guided adrenalectomy rates in primary aldosteronism: Results of an International Cohort (AVSTAT). J Clin Endocrinol Metab. 2021;106:e1400–e1407.

    Article  PubMed  Google Scholar 

  9. Meyrignac O, Arcis É, Delchier MC, Mokrane FZ, Darcourt J, Rousseau H, et al. Impact of cone beam - CT on adrenal vein sampling in primary aldosteronism. Eur J Radiol. 2020;124:108792.

    Article  PubMed  Google Scholar 

  10. Sung TY, Alobuia WM, Tyagi MV, Ghosh C, Kebebew E. Adrenal vein sampling to distinguish between unilateral and bilateral primary hyperaldosteronism: To ACTH stimulate or not? J Clin Med. 2020;9:1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoneda T, Karashima S, Kometani M, Usukura M, Demura M, Sanada J, et al. Impact of new quick gold nanoparticle-based cortisol assay during adrenal vein sampling for primary aldosteronism. J Clin Endocrinol Metab. 2016;101:2554–61.

    Article  CAS  PubMed  Google Scholar 

  12. Maruyama K, Chinda J, Kabara M, Nakagawa N, Fujino T, Takeuchi T, et al. Successful percutaneous transluminal angioplasty for the treatment of renovascular hypertension with an atrophic kidney. Heart vessels. 2015;30:274–9.

    Article  PubMed  Google Scholar 

  13. Wolley M, Gordon RD, Stowasser M. Reninoma: the importance of renal vein renin ratios for lateralisation and diagnosis. Am J Nephrol. 2014;39:16–19.

    Article  CAS  PubMed  Google Scholar 

  14. Wang B, Ding L, Xu S, Fan Y, Wang J, Zhao X, et al. A case of atypical reninoma with mild hypertension and normal plasma renin activity but elevated plasma renin concentration. BMC Endocr Disord. 2022;22:71.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu Z, Yang J, Hu J, Song Y, He W, Luo T, et al. Primary Aldosteronism in patients in China with recently detected hypertension. J Am Coll Cardiol. 2020;75:1913–22.

    Article  CAS  PubMed  Google Scholar 

  16. Young WF Jr. Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J Intern Med. 2019;285:126–48.

    Article  PubMed  Google Scholar 

  17. Bioletto F, Bollati M, Lopez C, Arata S, Procopio M, Ponzetto F, et al. Primary Aldosteronism and resistant hypertension: a pathophysiological insight. Int J Mol Sci. 2022;23:4803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parasiliti-Caprino M, Lopez C, Prencipe N, Lucatello B, Settanni F, Giraudo G, et al. Prevalence of primary aldosteronism and association with cardiovascular complications in patients with resistant and refractory hypertension. J Hypertens. 2020;38:1841–8.

    Article  CAS  PubMed  Google Scholar 

  19. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension. 2018;72:658–66.

    Article  CAS  PubMed  Google Scholar 

  20. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  21. Mulatero P, Monticone S, Deinum J, Amar L, Prejbisz A, Zennaro MC, et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: a position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension. J Hypertens. 2020;38:1919–28.

    Article  CAS  PubMed  Google Scholar 

  22. Delivanis DA, Vassiliadi DA, Tsagarakis S. Adrenal imaging in patients with endocrine hypertension. Endocrinol Metab Clin North Am. 2019;48:667–80.

    Article  PubMed  Google Scholar 

  23. Stowasser M, Gordon RD. Primary Aldosteronism: Changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. Physiol Rev. 2016;96:1327–84.

    Article  CAS  PubMed  Google Scholar 

  24. Ladurner R, Sommerey S, Buechner S, Dietz A, Degenhart C, Hallfeldt K, et al. Accuracy of adrenal imaging and adrenal venous sampling in diagnosing unilateral primary aldosteronism. Eur J Clin Investig. 2017;47:372–7.

    Article  Google Scholar 

  25. Kaur R, Young S. Discordant imaging: adrenal vein sampling in almost half of patients with primary aldosteronism and a unilateral adrenal adenoma. Intern Med J. 2023;53:1409–14.

    Article  CAS  PubMed  Google Scholar 

  26. Loberg C, Antoch G, Stegbauer J, Dringenberg T, Steuwe A, Fürst G, et al. Update: Selective adrenal venous sampling (AVS) - Indication, technique, and significance. RoFo : Fortschr auf dem Geb der Rontgenstrahlen und der Nuklearmedizin. 2021;193:658–66.

    Article  Google Scholar 

  27. Williams TA, Lenders JWM, Mulatero P, Burrello J, Rottenkolber M, Adolf C, et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. The lancet Diabetes &. endocrinology 2017;5:689–99.

    Google Scholar 

  28. Rossi GP, Rossitto G, Amar L, Azizi M, Riester A, Reincke M, et al. Clinical outcomes of 1625 patients with primary aldosteronism subtyped with adrenal vein sampling. Hypertension. 2019;74:800–8.

    Article  CAS  PubMed  Google Scholar 

  29. Williams TA, Burrello J, Sechi LA, Fardella CE, Matrozova J, Adolf C, et al. Computed tomography and adrenal venous sampling in the diagnosis of unilateral primary aldosteronism. Hypertension. 2018;72:641–9.

    Article  CAS  PubMed  Google Scholar 

  30. Arjani S, Bostonian TJ, Prasath V, Quinn PL, Chokshi RJ. Cost-effectiveness of adrenal vein sampling- vs computed tomography-guided adrenalectomy for unilateral adrenaloma in primary aldosteronism. J Endocrinol Investig. 2022;45:1899–908.

    Article  CAS  Google Scholar 

  31. Dekkers T, Prejbisz A, Kool LJS, Groenewoud H, Velema M, Spiering W, et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. lancet Diabetes Endocrinol 2016;4:739–46.

    Article  PubMed  Google Scholar 

  32. Deinum J, Prejbisz A, Lenders JWM, van der Wilt GJ. Adrenal vein sampling is the preferred method to select patients with primary aldosteronism for adrenalectomy: con side of the argument. Hypertension. 2018;71:10–14.

    Article  CAS  PubMed  Google Scholar 

  33. Rossi GP, Funder JW. Adrenal vein sampling is the preferred method to select patients with primary aldosteronism for adrenalectomy: pro side of the argument. Hypertension. 2018;71:5–9.

    Article  CAS  PubMed  Google Scholar 

  34. Fang C, Dai J, Zhao J, Huang X, He W, Xu J, et al. Surgery based on computed tomography images might be feasible for primary aldosteronism patients with visible unilateral adenoma. J Clin Hypertens. 2023;25:1001–8.

    Article  Google Scholar 

  35. Rossi GP, Maiolino G, Seccia TM. Adrenal venous sampling: where do we stand? Endocrinol Metab Clin North Am. 2019;48:843–58.

    Article  PubMed  Google Scholar 

  36. Rossi GP. Update in adrenal venous sampling for primary aldosteronism. Curr Opin Endocrinol Diabetes Obes. 2018;25:160–71.

    Article  CAS  PubMed  Google Scholar 

  37. Lenzini L, Pintus G, Rossitto G, Seccia TM, Rossi GP. Primary aldosteronism and drug resistant hypertension: A “Chicken-Egg” story. Exp Clin Endocrinol Diabetes 2023;131:409–17.

    Article  CAS  PubMed  Google Scholar 

  38. Torresan F, Rossitto G, Bisogni V, Lerco S, Maiolino G, Cesari M, et al. Resolution of drug-resistant hypertension by adrenal vein sampling-guided adrenalectomy: a proof-of-concept study. Clin Sci. 2020;134:1265–78.

    Article  Google Scholar 

  39. Araujo-Castro M, Paja Fano M, González Boillos M, Pla Peris B, Pascual-Corrales E, García Cano AM, et al. Adrenal venous sampling in primary aldosteronism: Experience of a Spanish multicentric study (Results from the SPAIN-ALDO Register). Endocrine. 2022;78:363–72.

    Article  CAS  PubMed  Google Scholar 

  40. Lethielleux G, Amar L, Raynaud A, Plouin PF, Steichen O. Influence of diagnostic criteria on the interpretation of adrenal vein sampling. Hypertension. 2015;65:849–54.

    Article  CAS  PubMed  Google Scholar 

  41. Steichen O, Amar L. Diagnostic criteria for adrenal venous sampling. Curr Opin Endocrinol Diabetes Obes 2016;23:218–24.

    Article  PubMed  Google Scholar 

  42. Monticone S, Viola A, Rossato D, Veglio F, Reincke M, Gomez-Sanchez C, et al. Adrenal vein sampling in primary aldosteronism: towards a standardised protocol. Lancet Diabetes Endocrinol 2015;3:296–303.

    Article  CAS  PubMed  Google Scholar 

  43. Bardet S, Chamontin B, Douillard C, Pagny JY, Hernigou A, Joffre F, et al. SFE/SFHTA/AFCE consensus on primary aldosteronism, part 4: Subtype diagnosis. Annales d’Endocrinologie. 2016;77:208–13.

    Article  PubMed  Google Scholar 

  44. Mulatero P, Sechi LA, Williams TA, Lenders JWM, Reincke M, Satoh F, et al. Subtype diagnosis, treatment, complications and outcomes of primary aldosteronism and future direction of research: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertension. 2020;38:1929–36.

    Article  CAS  Google Scholar 

  45. Wu VC, Hu YH, Er LK, Yen RF, Chang CH, Chang YL, et al. Case detection and diagnosis of primary aldosteronism - The consensus of Taiwan Society of Aldosteronism. J Formos Med Assoc. 2017;116:993–1005.

    Article  PubMed  Google Scholar 

  46. Rossi GP, Bagordo D, Amar L, Azizi M, Riester A, Reincke M, et al. Unilaterally Selective Adrenal Vein Sampling for Identification of Surgically Curable Primary Aldosteronism. Hypertension (Dallas, Tex : 1979). 2023 (e-pub ahead of print 2023/06/15; https://doi.org/10.1161/hypertensionaha.123.21247).

  47. Arlt W, Lang K, Sitch AJ, Dietz AS, Rhayem Y, Bancos I, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI insight. 2017;2:e93136.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kline GA, So B, Campbell DJT, Chin A, Harvey A, Venos E, et al. Apparent failed and discordant adrenal vein sampling: A potential confounding role of cortisol cosecretion? Clin Endocrinol. 2022;96:123–31.

    Article  CAS  Google Scholar 

  49. Li H, Zhang X, Shen S, Zhang Y, Zhang W, Feng W, et al. Adrenal androgen measurement for assessing the selectivity of adrenal venous sampling in primary aldosteronism. Steroids. 2018;134:16–21.

    Article  CAS  PubMed  Google Scholar 

  50. Buffolo F, Pieroni J, Ponzetto F, Forestiero V, Rossato D, Fonio P, et al. Prevalence of Cortisol cosecretion in patients with primary aldosteronism: role of Metanephrine in adrenal vein sampling. J Clin Endocrinol Metab. 2023;108:e720–e25.

    Article  PubMed  Google Scholar 

  51. Liu W, Zhang J, Yang Y, Jin Y, Li Z, You L, et al. Application of Metanephrine and Normetanephrine in evaluating the selectivity of adrenal vein sampling. Horm Metab Res. 2022;54:162–7.

    Article  CAS  PubMed  Google Scholar 

  52. Ceolotto G, Antonelli G, Caroccia B, Battistel M, Barbiero G, Plebani M, et al. Comparison of Cortisol, Androstenedione and Metanephrines to assess selectivity and lateralization of adrenal vein sampling in primary aldosteronism. J Clin Med. 2021;10:4755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Makita K, Nishimoto K, Kiriyama-Kitamoto K, Karashima S, Seki T, Yasuda M, et al. A novel method: super-selective adrenal venous sampling. J Vis Exp. 2017 e-pub ahead of print 2017/10/11; https://doi.org/10.3791/55716.

  54. Noda Y, Goshima S, Nagata S, Kawada H, Tanahashi Y, Kato T, et al. Utility of microcatheter in adrenal venous sampling for primary aldosteronism. Br J Radiol. 2020;93:20190636.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet. 2015;386:913–27.

    Article  CAS  PubMed  Google Scholar 

  56. Lacroix A, Bourdeau I. Bilateral adrenal Cushing’s syndrome: macronodular adrenal hyperplasia and primary pigmented nodular adrenocortical disease. Endocrinol Metab Clin North Am. 2005;34:441–58.

    Article  CAS  PubMed  Google Scholar 

  57. Ueland G, Methlie P, Jøssang DE, Sagen JV, Viste K, Thordarson HB, et al. Adrenal venous sampling for assessment of autonomous cortisol secretion. J Clin Endocrinol Metab. 2018;103:4553–60.

    Article  PubMed  Google Scholar 

  58. An X, Chen T, Mo D, Shen S, Zhang D, Zhang T, et al. Role of adrenal venous sampling in the differential diagnosis and treatment protocol of ACTH-independent Cushing’s syndrome with bilateral adrenal lesions. Endocrine. 2023;81:562–72.

    Article  CAS  PubMed  Google Scholar 

  59. Papakokkinou E, Jakobsson H, Sakinis A, Muth A, Wängberg B, Ehn O, et al. Adrenal venous sampling in patients with ACTH-independent hypercortisolism. Endocrine. 2019;66:338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seki T, Yasuda A, Kitajima N, Oki M, Takagi A, Nakamura N, et al. Adrenal venous sampling is useful for a definitive diagnosis in Cushing’s Syndrome with bilateral adrenal tumors. Tokai J Exp Clin Med. 2015;40:149–56.

    PubMed  Google Scholar 

  61. Wei J, Li S, Liu Q, Zhu Y, Wu N, Tang Y, et al. ACTH-independent Cushing’s syndrome with bilateral cortisol-secreting adrenal adenomas: a case report and review of literatures. BMC Endocr Disord. 2018;18:22.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhou Q, Liu X, Zhang H, Zhao Z, Li Q, He H, et al. Adrenal artery ablation for the treatment of hypercortisolism based on adrenal venous sampling: a potential therapeutic strategy. Diabetes Metab Syndr Obes: targets Ther 2020;13:3519–25.

    Article  Google Scholar 

  63. Johnson PC, Thompson SM, Adamo D, Fleming CJ, Bancos I, McKenzie TJ, et al. Adrenal venous sampling for lateralization of cortisol hypersecretion in patients with bilateral adrenal masses. Clin Endocrinol. 2023;98:177–89.

    Article  CAS  Google Scholar 

  64. Young WF Jr, du Plessis H, Thompson GB, Grant CS, Farley DR, Richards ML, et al. The clinical conundrum of corticotropin-independent autonomous cortisol secretion in patients with bilateral adrenal masses. World J Surg. 2008;32:856–62.

    Article  PubMed  Google Scholar 

  65. Farrugia FA, Charalampopoulos A. Pheochromocytoma. Endocr Regul. 2019;53:191–212.

    Article  PubMed  Google Scholar 

  66. Pappachan JM, Tun NN, Arunagirinathan G, Sodi R, Hanna FWF. Pheochromocytomas and hypertension. Curr Hypertens Rep. 2018;20:3.

    Article  PubMed  Google Scholar 

  67. Newbould EC, Ross GA, Dacie JE, Bouloux PM, Besser GM, Grossman A. The use of venous catheterization in the diagnosis and localization of bilateral phaeochromocytomas. Clin Endocrinol. 1991;35:55–9.

    Article  CAS  Google Scholar 

  68. DeLozier OM, Dream S, Findling JW, Rilling W, Kidambi S, Magill SB, et al. Wide variability in catecholamine levels from adrenal venous sampling in primary Aldosteronism. J Surg Res. 2022;277:1–6.

    Article  CAS  PubMed  Google Scholar 

  69. Freel EM, Stanson AW, Thompson GB, Grant CS, Farley DR, Richards ML, et al. Adrenal venous sampling for catecholamines: a normal value study. J Clin Endocrinol Metab. 2010;95:1328–32.

    Article  CAS  PubMed  Google Scholar 

  70. Sze CWC, O’Toole SM, Tirador RK, Akker SA, Matson M, Perry L, et al. Adrenal Vein Catecholamine levels and ratios: reference intervals derived from patients with primary Aldosteronism. Horm Metab Res. 2017;49:418–23.

    Article  CAS  PubMed  Google Scholar 

  71. Leader N, Ushinsky A, Malone CD. Adrenal vein sampling for ACTH-producing pheochromocytomas. Radiol Case Rep. 2021;16:2672–5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guan X, Li J, Liu Q, Wang X, Liu D. [The clinical value of adrenal venous sampling in the qualitative and topical diagnosis of pheochromocytoma (report of 4 cases)]. J Minim Invasive Urol. 2022;11:367–71.

    Google Scholar 

  73. Rossitto G, Amar L, Azizi M, Riester A, Reincke M, Degenhart C, et al. Subtyping of primary Aldosteronism in the AVIS-2 Study: Assessment of selectivity and lateralization. J Clin Endocrinol Metab. 2020;105:dgz017.

    Article  PubMed  Google Scholar 

  74. So CB, Leung AA, Chin A, Kline GA. Adrenal venous sampling in primary aldosteronism: lessons from over 600 single-operator procedures. Clin Radiol. 2022;77:e170–e9.

    Article  CAS  PubMed  Google Scholar 

  75. Cesmebasi A, Du Plessis M, Iannatuono M, Shah S, Tubbs RS, Loukas M. A review of the anatomy and clinical significance of adrenal veins. Clin Anat. 2014;27:1253–63.

    Article  PubMed  Google Scholar 

  76. Augustin AM, Dalla Torre G, Fuss CT, Fassnacht M, Bley TA, Kickuth R. Reduction of radiation exposure in adrenal vein sampling: impact of the rapid cortisol assay. RoFo : Fortschr auf dem Geb der Rontgenstrahlen und der Nuklearmedizin. 2021;193:1392–402.

    Article  Google Scholar 

  77. Lee I, Lau KK. Image fusion-augmented angiography improves right adrenal vein cannulation success rate in adrenal vein sampling. Am J Roentgenol. 2021;217:945–6.

    Article  Google Scholar 

  78. Wang Y, Chen X, Lu G, Su Y, Yang L, Shi G, et al. Improving the visualization of the adrenal veins using virtual monoenergetic images from dual-energy computed tomography before adrenal venous sampling. Tomogr (Ann Arbor, Mich). 2023;9:485–96.

    Article  Google Scholar 

  79. He X, Sueyoshi E, Tasaki Y, Miyazaki S, Murakami T, Nagayama H, et al. Benefits of adrenal venous sampling with preoperative four-dimensional CT imaging. Acta Radiol. 2023;64:1280–9.

    Article  PubMed  Google Scholar 

  80. Maruyama K, Sofue K, Okada T, Koide Y, Ueshima E, Iguchi G, et al. Advantages of intraprocedural unenhanced CT during adrenal venous sampling to confirm accurate catheterization of the right adrenal vein. Cardiovasc Intervent Radiol. 2019;42:542–51.

    Article  PubMed  Google Scholar 

  81. Plank C, Wolf F, Langenberger H, Loewe C, Schoder M, Lammer J. Adrenal venous sampling using Dyna-CT-a practical guide. Eur J Radiol. 2012;81:2304–7.

    Article  PubMed  Google Scholar 

  82. Hafezi-Nejad N, Gullotti DM, Bailey CR, Lessne ML, Holly BP. Does intraprocedural CT improve the success rate of adrenal venous sampling? A systematic review and meta-analysis of data from 809 patients. Cardiovasc Intervent Radiol. 2022;45:29–40.

    Article  PubMed  Google Scholar 

  83. Cai R, Hu C, Li HY. Cone-beam computed tomography is not a mandatory procedure in adrenal venous sampling for primary hyperaldosteronism. BMC Med imaging. 2022;22:189.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liu W, Zhang J, Yang Y, Jin Y, Li Z, You L, et al. Effect of Adrenocorticotropic hormone stimulation during simultaneous bilateral adrenal vein sampling in primary Aldosteronism. Horm Metab Res. 2021;53:364–70.

    Article  CAS  PubMed  Google Scholar 

  85. El Ghorayeb N, Mazzuco TL, Bourdeau I, Mailhot JP, Zhu PS, Thérasse E, et al. Basal and post-ACTH Aldosterone and its ratios are useful during adrenal vein sampling in primary Aldosteronism. J Clin Endocrinol Metab. 2016;101:1826–35.

    Article  CAS  PubMed  Google Scholar 

  86. Chee NYN, Abdul-Wahab A, Libianto R, Gwini SM, Doery JCG, Choy KW, et al. Utility of adrenocorticotropic hormone in adrenal vein sampling despite the occurrence of discordant lateralization. Clin Endocrinol. 2020;93:394–403.

    Article  CAS  Google Scholar 

  87. Kobayashi H, Nakamura Y, Abe M, Kurihara I, Itoh H, Ichijo T, et al. Effect of cosyntropin during adrenal venous sampling on subtype of primary aldosteronism: analysis of surgical outcome. Eur J Endocrinol. 2020;182:265–73.

    Article  CAS  PubMed  Google Scholar 

  88. Rossitto G, Battistel M, Barbiero G, Bisogni V, Maiolino G, Diego M, et al. The subtyping of primary aldosteronism by adrenal vein sampling: sequential blood sampling causes factitious lateralization. J Hypertens. 2018;36:335–43.

    Article  CAS  PubMed  Google Scholar 

  89. Chang CC, Lee BC, Chang YC, Wu VC, Huang KH, Liu KL. Comparison of C-arm computed tomography and on-site quick cortisol assay for adrenal venous sampling: A retrospective study of 178 patients. Eur Radiol. 2017;27:5006–14.

    Article  PubMed  Google Scholar 

  90. Betz MJ, Degenhart C, Fischer E, Pallauf A, Brand V, Linsenmaier U, et al. Adrenal vein sampling using rapid cortisol assays in primary aldosteronism is useful in centers with low success rates. Eur J Endocrinol. 2011;165:301–6.

    Article  CAS  PubMed  Google Scholar 

  91. Kometani M, Yoneda T, Karashima S, Takeda Y, Tsuiki M, Yasoda A, et al. Effect of intraprocedural cortisol measurement on ACTH-stimulated adrenal vein sampling in primary Aldosteronism. J Endocr Soc. 2022;6:bvac104.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rossi E, Regolisti G, Perazzoli F, Negro A, Grasselli C, Santi R, et al. Intraprocedural cortisol measurement increases adrenal vein sampling success rate in primary aldosteronism. Am J Hypertens. 2011;24:1280–5.

    Article  CAS  PubMed  Google Scholar 

  93. Page MM, Taranto M, Ramsay D, van Schie G, Glendenning P, Gillett MJ, et al. Improved technical success and radiation safety of adrenal vein sampling using rapid, semi-quantitative point-of-care cortisol measurement. Ann Clin Biochem. 2018;55:588–92.

    Article  CAS  PubMed  Google Scholar 

  94. Matsuura T, Takase K, Ota H, Yamada T, Sato A, Satoh F, et al. Radiologic anatomy of the right adrenal vein: preliminary experience with MDCT. AJR. Am J Roentgenol. 2008;191:402–8.

    Article  Google Scholar 

  95. Dong H, Huang J, Zhang Y, Dong Y, Liu M, Yan Z, et al. Adrenal venous sampling via an antecubital approach in primary aldosteronism: A multicenter study. J Clin Endocrinol Metab. 2023(e-pub ahead of print 2023/07/19; https://doi.org/10.1210/clinem/dgad433).

  96. Jiang X, Dong H, Peng M, Che W, Zou Y, Song L, et al. A novel method of adrenal venous sampling via an Antecubital approach. Cardiovasc Intervent Radiol. 2017;40:388–93.

    Article  PubMed  Google Scholar 

  97. Battistel M, Ceolotto G, Barbiero G, Rossitto G, Rossi GP. Adrenal venous sampling in dye-allergic primary aldosteronism patients: prevalence, pitfalls and a possible solution. J Hypertens. 2018;36:1942–4.

    Article  CAS  PubMed  Google Scholar 

  98. Younes N, Therasse E, Bourdeau I, Lacroix A. Successful adrenal vein sampling using dexamethasone premedication in patients with iodine contrast media allergy. J Endocr Soc. 2022;6:bvac093.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kamada H, Seiji K, Oguro S, Ota H, Yanagaki S, Omata K, et al. Utility of carbon dioxide venography and intraprocedural CT for adrenal venous sampling in patients with an allergy to iodinated contrast media. J Vasc Intervent Radiol 2023;34:1963–9.

    Article  Google Scholar 

  100. Yoshida Y, Nagai S, Shibuta K, Miyamoto S, Maruno M, Takaji R, et al. Adrenal vein sampling with gadolinium contrast medium in a patient with florid primary aldosteronism and iodine allergy. J Endocr Soc. 2022;6:bvac007.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Woolen SA, Shankar PR, Gagnier JJ, MacEachern MP, Singer L, Davenport MS. Risk of Nephrogenic Systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a Group II Gadolinium-based contrast agent: a systematic review and meta-analysis. JAMA Intern Med. 2020;180:223–30.

    Article  CAS  PubMed  Google Scholar 

  102. Chan CK, Chang YY, Tsai YC, Chen ZW, Wu CY, Huang WC, et al. Taiwan mini-frontier of primary aldosteronism: Updating treatment and comorbidities detection. J Formos Med Assoc. 2021;120:1811–20.

    Article  CAS  PubMed  Google Scholar 

  103. Di Martino M, García Sanz I, Muñoz de Nova JL, Marín Campos C, Martínez Martín M, Domínguez Gadea L. NP-59 test for preoperative localization of primary hyperaldosteronism. Langenbeck’s. Arch Surg. 2017;402:303–8.

    Article  Google Scholar 

  104. Gross MD, Shapiro B, Francis IR, Glazer GM, Bree RL, Arcomano MA, et al. Scintigraphic evaluation of clinically silent adrenal masses. J Nucl Med. 1994;35:1145–52.

    CAS  PubMed  Google Scholar 

  105. Sarkar SD, Cohen EL, Beierwaltes WH, Ice RD, Cooper R, Gold EN. A new and superior adrenal imaging agent, 131I-6beta-iodomethyl-19-nor-cholesterol (NP-59): evaluation in humans. J Clin Endocrinol Metab. 1977;45:353–62.

    Article  CAS  PubMed  Google Scholar 

  106. Saiga A, Yokota H, Nagano H, Sawada K, Kubota Y, Wada T, et al. 131I-6β-iodomethyl-19-norcholesterol adrenal scintigraphy as an alternative to adrenal venous sampling in differentiating aldosterone-producing adenoma from bilateral idiopathic hyperaldosteronism. Nucl Med Commun. 2020;41:1226–33.

    Article  CAS  PubMed  Google Scholar 

  107. Okada Y, Matsushita S, Yamaguchi K. Investigation of Cushing’s and subclinical Cushing’s syndromes using adrenocortical scintigraphy. Nucl Med Commun. 2021;42:619–24.

    Article  CAS  PubMed  Google Scholar 

  108. Anyfanti P, Mastrogiannis Κ, Lazaridis Α, Tasios Κ, Vasilakou D, Kyriazidou Α, et al. Clinical presentation and diagnostic evaluation of pheochromocytoma: case series and literature review. Clin Exp Hypertens. 2023;45:2132012.

    Article  PubMed  Google Scholar 

  109. Zhang X, Wakabayashi H, Hiromasa T, Kayano D, Kinuya S. Recent advances in radiopharmaceutical Theranostics of Pheochromocytoma and Paraganglioma. Semin Nucl Med. 2023;53:503–16.

    Article  PubMed  Google Scholar 

  110. Sato T, Matsutomo N, Yamamoto T, Fukami M, Kono T. Evaluation of standardized uptake value on (131)I-6β-iodomethyl-19-norcholesterol scintigraphy for diagnosis of primary aldosteronism and correspondence with adrenal venous sampling. Ann Nucl Med. 2023;37:89–98.

    Article  CAS  PubMed  Google Scholar 

  111. Covic A, Gusbeth-Tatomir P. The role of the renin-angiotensin-aldosterone system in renal artery stenosis, renovascular hypertension, and ischemic nephropathy: diagnostic implications. Prog Cardiovasc Dis. 2009;52:204–8.

    Article  CAS  PubMed  Google Scholar 

  112. Herrmann SM, Textor SC. Renovascular hypertension. Endocrinol Metab Clin North Am. 2019;48:765–78.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gavras H, Brunner HR, Thurston H, Laragh JH. Reciprocation of renin dependency with sodium volume dependency in renal hypertension. Science. 1975;188:1316–7.

    Article  CAS  PubMed  Google Scholar 

  114. Mannemuddhu SS, Ojeda JC, Yadav A. Renovascular hypertension. Prim Care. 2020;47:631–44.

    Article  PubMed  Google Scholar 

  115. Tullus K, Brennan E, Hamilton G, Lord R, McLaren CA, Marks SD, et al. Renovascular hypertension in children. Lancet. 2008;371:1453–63.

    Article  CAS  PubMed  Google Scholar 

  116. Bhattad PB, Jain V. Renal Artery Stenosis as etiology of recurrent flash pulmonary edema and role of imaging in timely diagnosis and management. Cureus. 2020;12:e7609.

    PubMed  PubMed Central  Google Scholar 

  117. Garovic VD, Textor SC. Renovascular hypertension and ischemic nephropathy. Circulation. 2005;112:1362–74.

    Article  PubMed  Google Scholar 

  118. Balamuthusamy S, Kannan A, Thajudeen B, Ottley D, Jalandhara N. Mild renal artery stenosis can induce renovascular hypertension and is associated with elevated renal vein renin secretion. Semin Dial. 2015;28:293–8.

    Article  PubMed  Google Scholar 

  119. Bavishi C, de Leeuw PW, Messerli FH. Atherosclerotic renal artery stenosis and hypertension: pragmatism, pitfalls, and perspectives. Am J Med. 2016;129:635.e635–635.e614.

    Article  Google Scholar 

  120. Saad A, Herrmann SM, Crane J, Glockner JF, McKusick MA, Misra S, et al. Stent revascularization restores cortical blood flow and reverses tissue hypoxia in atherosclerotic renal artery stenosis but fails to reverse inflammatory pathways or glomerular filtration rate. Circ Cardiovasc intervent. 2013;6:428–35.

    Article  Google Scholar 

  121. Marks LS, Maxwell MH. Renal vein renin: value and limitations in the prediction of operative results. Urol Clin North Am. 1975;2:311–25.

    Article  CAS  PubMed  Google Scholar 

  122. Marboeuf P, Delsart P, Hurt C, Villers A, Hossein-Foucher C, Beregi JP, et al. [Management of renal atrophy in hypertensive patients: experience in. Lille] Presse Med (Paris, Fr : 1983) 2010;39:e67–76.

  123. Trnka P, Orellana L, Walsh M, Pool L, Borzi P. Reninoma: an uncommon cause of Renin-mediated hypertension. Front Pediatr. 2014;2:89.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mondschein R, Kwan E, Abou-Seif C, Rajarubendra N. Accurate lesion localisation facilitates nephron sparing surgery in reninoma patients: case report and discussion. Urol Case Rep. 2022;43:102069.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wong L, Hsu TH, Perlroth MG, Hofmann LV, Haynes CM, Katznelson L. Reninoma: case report and literature review. J Hypertens. 2008;26:368–73.

    Article  CAS  PubMed  Google Scholar 

  126. Osawa S, Hosokawa Y, Soda T, Yasuda T, Kaneto H, Kitamura T, et al. Juxtaglomerular cell tumor that was preoperatively diagnosed using selective renal venous sampling. Intern Med. 2013;52:1937–42.

    Article  PubMed  Google Scholar 

  127. Koriyama N, Kakei M, Yaekura K, Nakazaki M, Morimitsu S, Hamada H, et al. A case of renal juxtaglomerular cell tumor: usefulness of segmental sampling to prove autonomic secretion of the tumor. Am J Med Sci. 1999;318:194–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (Grant nos. ZR2021MH039, ZR2015HL006, 2012YD18051), Clinical Science and Technology Innovation Program (Grant no. 202019089), and Major Project of Shandong University (Grant no. qlyxjy-201830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqing Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zheng, F., Zhang, X. et al. Selective venous sampling for secondary hypertension. Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01699-3

Keywords

Search

Quick links