Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Special issue: Renal denervation: Evidence and challenges in clinical practice.
  • Published:

Impact of renal denervation on quality of life (How does renal denervation contribute to improving hypertension treatment affected by poor medication adherence?)

A Correction to this article was published on 24 April 2024

This article has been updated

Abstract

The US Food and Drug Administration has approved renal denervation (RDN) as a new treatment option for hypertension (HT) because it not only has antihypertensive effects but also improves the quality of blood pressure (BP) reduction. RDN is expected to be increasingly used in clinical practice in the future. This review summarizes the impact of RDN on quality of life (QOL). Although the treatment of HT aims to improve life prognosis, the use of antihypertensive agents can impair QOL because of adverse effects and lifestyle changes associated with long-term medication use. Consequently, poor adherence to antihypertensive agents is a common problem and may be the most important issue affecting patient QOL. In RDN trials in patients taking antihypertensive agents, approximately 40% of patients had poor adherence to the drugs. Poor adherence is often the cause of resistant hypertension. Therefore, RDN should be well suited to treating HT and improving QOL. Studies have shown that approximately 30% of HT patients prefer RDN to drug treatment. Patients who prefer RDN are typically male and younger and have high BP, poor adherence, and a history of adverse effects of antihypertensive agents. We hope that RDN will improve not only life prognosis but also QOL in HT patients because of its benefits for adherence. Furthermore, we expect that in the future, RDN will be used in other sympathetic nervous system-related diseases, such as heart failure, atrial fibrillation, and sleep apnea syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

References

  1. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  2. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  PubMed  Google Scholar 

  3. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  4. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–45.

    Article  PubMed  Google Scholar 

  5. Azizi M, Saxena M, Wang Y, Jenkins JS, Devireddy C, Rader F, et al. Endovascular ultrasound renal denervation to treat hypertension: the RADIANCE II randomized clinical trial. JAMA. 2023;329:651–61.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–70.

    Article  PubMed  Google Scholar 

  7. Kandzari DE, Bohm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55.

    Article  PubMed  Google Scholar 

  8. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet. 2021;397:2476–86.

    Article  CAS  PubMed  Google Scholar 

  9. Kario K, Mahfoud F, Kandzari DE, Townsend RR, Weber MA, Schmieder RE, et al. Long-term reduction in morning and nighttime blood pressure after renal denervation: 36-month results from SPYRAL HTN-ON MED trial. Hypertens Res. 2023;46:280–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kario K, Yokoi Y, Okamura K, Fujihara M, Ogoyama Y, Yamamoto E, et al. Catheter-based ultrasound renal denervation in patients with resistant hypertension: the randomized, controlled REQUIRE trial. Hypertens Res. 2022;45:221–31.

    Article  PubMed  Google Scholar 

  11. Mancia G, Kreutz R, Brunstrom M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023;41:1874–2071.

    Article  CAS  PubMed  Google Scholar 

  12. Schmieder RE, Jumar A, Fronk EM, Alexandre AF, Bramlage P. Quality of life and emotional impact of a fixed-dose combination of antihypertensive drugs in patients with uncontrolled hypertension. J Clin Hypertens (Greenwich). 2017;19:126–34.

    Article  PubMed  Google Scholar 

  13. Croog SH, Levine S, Testa MA, Brown B, Bulpitt CJ, Jenkins CD, et al. The effects of antihypertensive therapy on the quality of life. N. Engl J Med. 1986;314:1657–64.

    Article  CAS  PubMed  Google Scholar 

  14. Bremner AD. Antihypertensive medication and quality of life–silent treatment of a silent killer? Cardiovasc Drugs Ther. 2002;16:353–64.

    Article  PubMed  Google Scholar 

  15. Mena-Martin FJ, Martin-Escudero JC, Simal-Blanco F, Carretero-Ares JL, Arzua-Mouronte D, Herreros-Fernandez V. Health-related quality of life of subjects with known and unknown hypertension: results from the population-based Hortega study. J Hypertens. 2003;21:1283–9.

    Article  CAS  PubMed  Google Scholar 

  16. Saito I, Saruta T. Effect of education through a periodic newsletter on persistence with antihypertensive therapy. Hypertens Res. 2003;26:159–62.

    Article  PubMed  Google Scholar 

  17. Yoshida K, Matsuoka H, Omae T, Fujii J. Patient-hospital relationship and quality of life in elderly patients with hypertension. Hypertens Res. 1995;18:77–83.

    Article  CAS  PubMed  Google Scholar 

  18. Kario K, Kai H, Nanto S, Yokoi H. Anti-hypertensive medication adherence in the REQUIRE trial: post-hoc exploratory evaluation. Hypertens Res. 2023;46:2044–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Persell SD. Prevalence of resistant hypertension in the United States, 2003-2008. Hypertension. 2011;57:1076–80.

    Article  CAS  PubMed  Google Scholar 

  20. Kario K, Okura A, Okawara Y, Tomitani N, Ikemoto T, Hoshide S. Impact of introducing catheter-based renal denervation into Japan for hypertension management: Estimation of number of target patients and clinical relevance of ambulatory blood pressure reduction. Curr Hypertens Rev. 2016;12:156–63.

  21. Okamura K, Shirai K, Okuda T, Urata H. The prevalence of Japanese outpatients with hypertension who meet the definition of treatment resistant hypertension and are eligible for enrolment in clinical trials of endovascular ultrasound renal denervation. Intern Med. 2018;57:1–12.

    Article  CAS  PubMed  Google Scholar 

  22. Okamura K, Yano Y, Takamiya Y, Shirai K, Urata H. Efficacy and safety of a combination antihypertensive drug (olmesartan plus azelnidipine): “Issues with hypertension studies in real-world practice”. Clin Exp Hypertens. 2020;42:438–48.

    Article  CAS  PubMed  Google Scholar 

  23. Okamura K, Shirai K, Miyazaki M, Okuda T, Takamiya Y, Goto M, et al. Investigation of a dipeptidyl peptidase-4 inhibitor/thiazolidinedione combination drug for patients with type 2 diabetes and poor glycemic control: difficulty with patient enrollment. J Clin Med Res. 2019;11:89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okamura K, Shirai K, Totake N, Okuda T, Urata H. Prospective direct comparison of antihypertensive effect and safety between high-dose amlodipine or indapamide in hypertensive patients uncontrolled by standard doses of angiotensin receptor blockers and amlodipine. Clin Exp Hypertens. 2018;40:99–106.

    Article  CAS  PubMed  Google Scholar 

  25. Okamura K, Okuda T, Kumagai N, Mitsutake R, Urata H. CHAT-E i: antihypertensive effect and safety of a candesartan/hydrochlorothiazide combination in patients with uncontrolled hypertension. Therapeutic Res. 2015;36:439–48.

    Google Scholar 

  26. Azizi M, Sharp ASP, Fisher NDL, Weber MA, Lobo MD, Daemen J, et al. Patient-level pooled analysis of endovascular ultrasound renal denervation or a sham procedure at 6 months following medication escalation: The RADIANCE Clinical Trial Program. Circulation. 2024;149:747-759.

  27. Miura K, Nagai M, Ohkubo T. Epidemiology of hypertension in Japan: where are we now? Circ J. 2013;77:2226–31.

    Article  PubMed  Google Scholar 

  28. Chowdhury EK, Reid CM, Zomer E, Kelly DJ, Liew D. Cost-effectiveness of renal denervation therapy for treatment-resistant hypertension: a best case scenario. Am J Hypertens. 2018;31:1156–63.

    Article  PubMed  Google Scholar 

  29. Kario K, Kagitani H, Hayashi S, Hanamura S, Ozawa K, Kanegae H. A Japan nationwide web-based survey of patient preference for renal denervation for hypertension treatment. Hypertens Res. 2022;45:232–40.

    Article  PubMed  Google Scholar 

  30. Zhang Z, Zhang X, Ye R, Li X, Chen X. Patient preference for renal denervation therapy in hypertension: a cross-sectional survey in Chengdu, China. Hypertens Res. 2022;45:954–61.

    Article  PubMed  Google Scholar 

  31. Schmieder RE, Hogerl K, Jung S, Bramlage P, Veelken R, Ott C. Patient preference for therapies in hypertension: a cross-sectional survey of German patients. Clin Res Cardiol. 2019;108:1331–42.

    Article  PubMed  Google Scholar 

  32. Kresoja KP, Rommel KP, Fengler K, von Roeder M, Besler C, Lucke C, et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2021;14:e007421.

    Article  CAS  PubMed  Google Scholar 

  33. Kase M, Fujiki S, Kashimura T, Okura Y, Kodera K, Watanabe H, et al. Relationship between medical therapy, long-term care insurance, and comorbidity in elderly patients with heart failure with systolic dysfunction. Circ J. 2023;87:1130–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kewcharoen J, Vutthikraivit W, Rattanawong P, Prasitlumkum N, Akoum NW, Bunch TJ, et al. Renal sympathetic denervation in addition to pulmonary vein isolation reduces the recurrence rate of atrial fibrillation: an updated meta-analysis of randomized control trials. J Inter Card Electrophysiol. 2021;60:459–67.

    Article  Google Scholar 

  35. Heradien M, Mahfoud F, Greyling C, Lauder L, van der Bijl P, Hettrick DA, et al. Renal denervation prevents subclinical atrial fibrillation in patients with hypertensive heart disease: Randomized, sham-controlled trial. Heart Rhythm. 2022;19:1765–73.

    Article  PubMed  Google Scholar 

  36. Hawson J, Harmer JA, Cowan M, Virk S, Campbell T, Bennett RG, et al. Renal denervation for the management of refractory ventricular arrhythmias: a systematic review. JACC Clin Electrophysiol 2021;7:100–8.

    Article  PubMed  Google Scholar 

  37. Kario K, Hettrick DA, Prejbisz A, Januszewicz A. Obstructive sleep apnea-induced neurogenic nocturnal hypertension: a potential role of renal denervation? Hypertension. 2021;77:1047–60.

    Article  CAS  PubMed  Google Scholar 

  38. Kou C, Zhao X, Lin X, Fan X, Wang Q, Yu J. Effect of different treatments for obstructive sleep apnoea on blood pressure. J Hypertens. 2022;40:1071–84.

    Article  CAS  PubMed  Google Scholar 

  39. Mahfoud F, Townsend RR, Kandzari DE, Kario K, Schmieder RE, Tsioufis K, et al. Changes in plasma renin activity after renal artery sympathetic denervation. J Am Coll Cardiol. 2021;77:2909–19.

    Article  CAS  PubMed  Google Scholar 

  40. Satoh M, Kikuya M, Hara A, Ohkubo T, Mori T, Metoki H, et al. Aldosterone-to-renin ratio and home blood pressure in subjects with higher and lower sodium intake: the Ohasama study. Hypertens Res. 2011;34:361–6.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Zhu B, Zhu L, Zhao L, Fan Z, Ding D, et al. Thirty-six-month results of laparoscopic-based renal denervation plus unilateral laparoscopic adrenalectomy for the treatment of patients with resistant hypertension caused by unilateral aldosterone-producing adenoma. J Clin Hypertens (Greenwich). 2021;23:946–53.

    Article  PubMed  Google Scholar 

  42. Gosse P, Sentilhes L, Boulestreau R, Doublet J, Gaudissard J, Azizi M, et al. Endovascular ultrasound renal denervation to lower blood pressure in young hypertensive women planning pregnancy: study protocol for a multicentre randomised, blinded and sham controlled proof of concept study. BMJ Open. 2023;13:e071164.

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Leeuw PW, Bisognano JD, Bakris GL, Nadim MK, Haller H, Kroon AA, et al. Sustained reduction of blood pressure with baroreceptor activation therapy: results of the 6-year open follow-up. Hypertension. 2017;69:836–43.

    Article  PubMed  Google Scholar 

  44. Spiering W, Williams B, Van der Heyden J, van Kleef M, Lo R, Versmissen J, et al. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet. 2017;390:2655–61.

    Article  PubMed  Google Scholar 

  45. Lobo MD, Ott C, Sobotka PA, Saxena M, Stanton A, Cockcroft JR, et al. Central iliac arteriovenous anastomosis for uncontrolled hypertension: one-year results from the ROX CONTROL HTN Trial. Hypertension. 2017;70:1099–105.

    Article  CAS  PubMed  Google Scholar 

  46. Nakagami H, Ishihama T, Daikyoji Y, Sasakura C, Yamada E, Morishita R. Brief report on a phase I/IIa study to assess the safety, tolerability, and immune response of AGMG0201 in patients with essential hypertension. Hypertens Res. 2022;45:61–65.

    Article  CAS  PubMed  Google Scholar 

  47. Daemen J, Van Mieghem N. First-in-man radial access renal denervation with the ReCor Radiance catheter. EuroIntervention. 2015;10:1209–1212.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Okamura.

Ethics declarations

Conflict of interest

We received grant support from Otsuka Holdings for participating in a clinical trial on the treatment of hypertension with an ultrasound renal denervation system.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the title was incorrectly given as ‘Impact of renal denervation on quality of life how does renal denervation contribute to improving hypertension treatment affected by poor medication adherence?’ but should have been ‘Impact of renal denervation on quality of life (How does renal denervation contribute to improving hypertension treatment affected by poor medication adherence?)’. The original article has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, K., Shimada, H., Imazato, K. et al. Impact of renal denervation on quality of life (How does renal denervation contribute to improving hypertension treatment affected by poor medication adherence?). Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01679-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01679-7

Keywords:

Search

Quick links