Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physical exercise is essential for increasing ventricular contractility in hypertensive rats treated with losartan

Abstract

The treatment of hypertensive patients with losartan is very common. Despite the reduction in blood pressure, its effects on cardiac contractility and sympathetic autonomic drive are still controversial. In turn, aerobic physical training (APT) also presents an important therapeutic option, providing significant improvements in cardiovascular autonomic control, however little is known about its effects on cardiac contractility, especially when associated with losartan. Therefore, we investigated in spontaneously hypertensive rats (SHR) the effects of losartan and APT on cardiac hemodynamics and functionality, with emphasis on autonomic tonic balance and cardiac contractility. Sixty-four SHR (18 weeks old) were divided into four groups (N = 16): vehicle; vehicle submitted to APT through swimming for 12 weeks; treated with losartan (5 mg·kg−1·d1) for 12 weeks; and treated with losartan associated with APT. The groups were submitted to cardiac morphological and functional analysis by echocardiography; double blockade of cardiac autonomic receptors with atropine and propranolol; and coronary bed reactivity and left ventricular contractility analyses by the Langendorff technique. APT improved functional parameters and autonomic balance by reducing sympathetic drive and/or increasing vagal drive. In contrast, it promoted a concentric remodeling of the left ventricle (LV). Treatment with losartan reduced sympathetic autonomic drive and cardiac morphological parameters, but there were no significant gains in cardiac functionality and contractility. When combined, the concentric remodeling of the LV to APT was abolished and gains in cardiac functionality and contractility were observed. Our findings suggest that the effects of losartan and APT are complementary and should be applied together in the treatment of hypertension.

In spontaneously hypertensive rats, the combination of aerobic physical training with losartan treatment was crucial to greater blood pressure reductions and an increase in left ventricular contractility. Furthermore, losartan treatment prevented the concentric left ventricular remodeling caused by aerobic physical training.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith TL, Hutchins PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension. 1979;1:508–17.

    Article  CAS  PubMed  Google Scholar 

  2. Dornas WC, Silva ME. Animal models for the study of arterial hypertension. J Biosci. 2011;36:731–7.

    Article  PubMed  Google Scholar 

  3. Masson GS, Michelini LC. Autonomic dysfunction, sympathetic hyperactivity and the development of end-organ damage in hypertension: multiple benefits of exercise training. Hear Res Open J. 2015;2:60–9.

    Article  Google Scholar 

  4. Shanks J, Manou-Stathopoulou S, Lu CJ, Li D, Paterson DJ, Herring N. Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am J Physiol Hear Circ Physiol. 2013;305:980–6.

    Article  Google Scholar 

  5. Williams B, Mancia G, Spiering W, Rosei EA, AZIZI M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  6. Da Costa Rebelo RM, Schreckenberg R, Schlüter KD. Adverse cardiac remodelling in spontaneously hypertensive rats: acceleration by high aerobic exercise intensity. J Physiol. 2012;590:5389–400.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schultz RL, Swallow JG, Waters RP, Kuzman JA, Redetzke RA, Said S, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50:410–6. https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.106.086371.

    Article  CAS  PubMed  Google Scholar 

  8. Vieira S, Aguilar BA, Veiga AC, Philbois SV, Freitas ACS, Rodrigues KP, et al. Integrative physiological study of adaptations induced by aerobic physical training in hypertensive hearts. Front Physiol. 2022;13:1–10.

    Article  Google Scholar 

  9. Choi SY. The characteristics of electrocardiography findings in left ventricular remodeling patterns of hypertensive patients. Biomed Sci Lett. 2015;21:208–17.

    Article  Google Scholar 

  10. Pagan LU, Damatto RL, Gomes MJ, Lima ARR, Cezar MDM, Damatto FC, et al. Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. J Cell Mol Med. 2019;23:6504–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kemi O, Haram P, Loennechen J, Osnes J, Skomedal T, Wisloff U, et al. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res. 2005;67:161–72. https://academic.oup.com/cardiovascres/article-lookup/doi/10.1016/j.cardiores.2005.03.010.

    Article  CAS  PubMed  Google Scholar 

  12. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57.

    Article  CAS  PubMed  Google Scholar 

  13. Al-Majed ARA, Assiri E, Khalil NY, Abdel-Aziz HA. Losartan: comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 2015;40:159–94.

    Article  CAS  PubMed  Google Scholar 

  14. Maida KD, Gastaldi AC, de Paula Facioli T, de Araújo JE, de Souza HC. Physical training associated with enalapril but not to losartan, results in better cardiovascular autonomic effects. Auton Neurosci Basic Clin. 2017;203:33–40. https://doi.org/10.1016/j.autneu.2016.12.002.

    Article  CAS  Google Scholar 

  15. Mowry FE, Peaden SC, Stern JE, Biancardi VC. TLR4 and AT1R mediate blood-brain barrier disruption, neuroinflammation, and autonomic dysfunction in spontaneously hypertensive rats. Pharm Res. 2021;174:105877 https://doi.org/10.1016/j.phrs.2021.105877.

    Article  CAS  Google Scholar 

  16. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63:572–9.

    Article  CAS  PubMed  Google Scholar 

  17. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in SHR. Hypertension. 1997;29:519–24.

    Article  CAS  PubMed  Google Scholar 

  18. Biancardi VC, Stern JE. Compromised blood-brain barrier permeability: Novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol. 2016;594:1591–600.

    Article  CAS  PubMed  Google Scholar 

  19. Tomaz de Castro QJ, Araujo CM, Watai PY, de Castro e Silva SS, de Lima WG, Becker LK, et al. Effects of physical exercise combined with captopril or losartan on left ventricular hypertrophy of hypertensive rats. Clin Exp Hypertens. 2021;43:536–49. https://doi.org/10.1080/10641963.2021.1907399.

    Article  CAS  PubMed  Google Scholar 

  20. Gardim CB, Veiga AC, Aguilar BA, Philbois SV, Souza HCD. Effects of chronic cholinergic stimulation associated with aerobic physical training on cardiac morphofunctional and autonomic parameters in spontaneously hypertensive rats. Sci Rep. 2021;11:1–10. https://doi.org/10.1038/s41598-021-96505-2.

    Article  CAS  Google Scholar 

  21. Gobatto CA, De Mello MAR, Sibuya CY, De Azevedo JRM, Dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 2001;130:21–7.

    Article  CAS  PubMed  Google Scholar 

  22. Felix ACS, Dutra SGV, Gastaldi AC, Bonfim PC, Vieira S, de Souza HCD. Physical training promotes similar effects to the blockade of angiotensin-converting enzyme on the cardiac morphology and function in old female rats subjected to premature ovarian failure. Exp Gerontol. 2018;109:90–8. https://linkinghub.elsevier.com/retrieve/pii/S053155651730027X.

    Article  CAS  PubMed  Google Scholar 

  23. Dias CJ, Costa HA, Alves Dias-Filho CA, Ferreira AC, Rodrigues B, Irigoyen MC, et al. Carvacrol reduces blood pressure, arterial responsiveness and increases expression of MAS receptors in spontaneously hypertensive rats. Eur J Pharm. 2022;917:174717.

    Article  CAS  Google Scholar 

  24. Magder S. The meaning of blood pressure. Crit Care. 2018;22:257 https://ccforum.biomedcentral.com/articles/10.1186/s13054-018-2171-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sabbahi A, Arena R, Elokda A, Phillips SA. Exercise and hypertension: uncovering the mechanisms of vascular control. Prog Cardiovasc Dis. 2016;59:226–34. https://doi.org/10.1016/j.pcad.2016.09.006.

    Article  PubMed  Google Scholar 

  26. Blanco JHD, Gastaldi AC, Gardim CB, Araujo JE, Simões MV, Oliveira LFL, et al. Chronic cholinergic stimulation promotes changes in cardiovascular autonomic control in spontaneously hypertensive rats. Auton Neurosci Basic Clin. 2015;193:97–103. https://doi.org/10.1016/j.autneu.2015.09.002.

    Article  CAS  Google Scholar 

  27. De Rosa ML, Cardace P, Rossi M, Baiano A, De Cristofaro A. Comparative effects of chronic ACE inhibition and AT1 receptor blocked losartan on cardiac hypertrophy and renal function in hypertensive patients. J Hum Hypertens. 2002;16:133–40.

    Article  PubMed  Google Scholar 

  28. Tani S, Nagao K, Anazawa T, Kawamata H, Furuya S, Takahashi H, et al. Effects of enalapril and losartan in left ventricular remodeling after acute myocardial infarction: A possible mechanism of prevention of cardiac events by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in high-risk myocardial. Intern Med. 2009;48:877–82.

    Article  PubMed  Google Scholar 

  29. Zhu YC, Zhu YZ, Lu N, Wang MJ, Wang YX, Yao T. Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and cardiac remodelling. Clin Exp Pharm Physiol. 2003;30:911–8.

    Article  CAS  Google Scholar 

  30. Wilson AJ, Wang VY, Sands GB, Young AA, Nash MP, LeGrice IJ. Increased cardiac work provides a link between systemic hypertension and heart failure. Physiol Rep. 2017;5:1–8.

    Article  Google Scholar 

  31. Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29:1–6.

    Article  CAS  PubMed  Google Scholar 

  32. Maskali F, Poussier S, Louis H, Boutley H, Lhuillier M, Thornton SN, et al. Assessment of the early stage of cardiac remodeling of spontaneously hypertensive heart failure rats using the quantitative 3-dimensional analysis provided by acipimox-enhanced FDG-PET. Int J Cardiovasc Imaging. 2014;30:449–56.

    Article  PubMed  Google Scholar 

  33. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA. 1982;79:3310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407. https://doi.org/10.1038/s41569-018-0007-y.

    Article  CAS  PubMed  Google Scholar 

  35. Engel LE, de Souza FLA, Giometti IC, Okoshi K, Mariano TB, Ferreira NZ, et al. The high-intensity interval training mitigates the cardiac remodeling in spontaneously hypertensive rats. Life Sci. 2022;308:120959.

    Article  CAS  PubMed  Google Scholar 

  36. Klaeboe LG, Edvardsen T. Echocardiographic assessment of left ventricular systolic function. J Echocardiogr. 2019;17:10–6. https://doi.org/10.1007/s12574-018-0405-5.

    Article  PubMed  Google Scholar 

  37. Dumesnil JG, Dion D, Yvorchuk K, Davies RA, Chan K. A new, simple and accurate method for determining ejection fraction by Doppler echocardiography. Can J Cardiol. 1995;11:1007–14. http://europepmc.org/abstract/MED/8542542.

    CAS  PubMed  Google Scholar 

  38. Gohlke P, Linz W, Schölkens BA, Wiemer G, Unger T. Cardiac and vascular effects of long-term losartan treatment in stroke-prone spontaneously hypertensive rats. Hypertension. 1996;28:397–402. https://www.ahajournals.org/doi/10.1161/01.HYP.28.3.397.

    Article  CAS  PubMed  Google Scholar 

  39. Dickhout JG, Lee RMKW. Blood pressure and heart rate development in young spontaneously hypertensive rats. Am J Physiol Hear Circ Physiol. 1998;274:794–800.

    Article  Google Scholar 

  40. Anishchenko AM, Aliev OI, Sidekhmenova AV, Shamanaev AY, Plotnikov MB. Dynamics of Blood Pressure Elevation and Endothelial Dysfunction in SHR Rats During the Development of Arterial Hypertension. Bull Exp Biol Med. 2015;159:591–3. http://link.springer.com/10.1007/s10517-015-3020-8.

    Article  CAS  PubMed  Google Scholar 

  41. Dodd MS, Ball DR, Schroeder MA, Le Page LM, Atherton HJ, Heather LC, et al. In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res. 2012;95:69–76. https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvs164.

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, et al. Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc. 2019;8. https://www.ahajournals.org/doi/10.1161/JAHA.118.010926.

  43. Boe E, Smiseth OA, Storsten P, Andersen OS, Aalen J, Eriksen M, et al. Left ventricular end-systolic volume is a more sensitive marker of acute response to cardiac resynchronization therapy than contractility indices: insights from an experimental study. EP Eur. 2019;21:347–55. https://doi.org/10.1016/j.autneu.2013.04.003.

    Google Scholar 

  44. Rizzoni D, Porteri E, Piccoli A, Castellano M, Bettoni G, Muiesan ML, et al. Effects of losartan and enalapril on small artery structure in hypertensive rats. Hypertension. 1998;32:305–10. https://www.ahajournals.org/doi/10.1161/01.HYP.32.2.305.

    Article  CAS  PubMed  Google Scholar 

  45. Baraldi D, Casali K, Fernandes RO, Campos C, Sartório C, Conzatti A, et al. The role of AT1-receptor blockade on reactive oxygen species and cardiac autonomic drive in experimental hyperthyroidism. Auton Neurosci Basic Clin. 2013;177:163–9. https://doi.org/10.1016/j.autneu.2013.04.003.

    Article  CAS  Google Scholar 

  46. Liu YP, Lin YC, Lin CC, Tsai SH, Tung CS. Spectral analysis of cardiovascular oscillations in the 7-day regimen of losartan administration with and without cold stress. Chin J Physiol. 2022;65:171–8.

    Article  CAS  PubMed  Google Scholar 

  47. Petretta M, Spinelli L, Marciano F, Apicella C, Vicario MLE, Testa G, et al. Effects of losartan treatment on cardiac autonomic control during volume loading in patients with DCM. Am J Physiol Hear Circ Physiol. 2000;279:86–92.

    Article  Google Scholar 

  48. Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72:648–72.

    Article  CAS  PubMed  Google Scholar 

  49. Mangiapane ML, Simpson JB. Subfornical Organ Lesions Reduce the Presor Effect of Systemic Angiotensin II. Neuroendocrinol. 1980;31:380–4. https://doi.org/10.1159/000123107.

    Article  CAS  Google Scholar 

  50. Kucuk M, Kaya M, Kalayci R, Cimen V, Kudat H, Arican N, et al. Effects of losartan on the blood-brain barrier permeability in long-term nitric oxide blockade-induced hypertensive rats. Life Sci. 2002;71:937–46.

    Article  CAS  PubMed  Google Scholar 

  51. Kaya M, Kalayci R, Küçük M, Arican N, Elmas I, Kudat H, et al. Effect of losartan on the blood-brain barrier permeability in diabetic hypertensive rats. Life Sci. 2003;73:3235–44.

    Article  CAS  PubMed  Google Scholar 

  52. de Abreu SB, Lenhard A, Mehanna A, de Souza HCD, de Aguiar Correa FM, Hasser EM, et al. Role of paraventricular nucleus in exercise training-induced autonomic modulation in conscious rats. Auton Neurosci. 2009;148:28–35. https://doi.org/10.1016/j.autneu.2009.02.007.

    Article  PubMed  Google Scholar 

  53. Mastelari RB, de Souza HCD, Lenhard A, Corrêa FMDA, Martins-pinge MC. Nitric oxide inhibition in paraventricular nucleus on cardiovascular and autonomic modulation after exercise training in unanesthetized rats. Brain Res. 2011;1375:68–76. https://doi.org/10.1016/j.brainres.2010.12.049.

    Article  CAS  PubMed  Google Scholar 

  54. Schaefer ME, Allert JA, Adams HR, Laughlin MH. Adrenergic responsiveness and intrinsic sinoatrial automaticity of exercise-trained rats. Med Sci Sports Exerc. 1992;24:887–94. http://www.ncbi.nlm.nih.gov/pubmed/1406174.

    Article  CAS  PubMed  Google Scholar 

  55. Bahrainy S, Levy WC, Busey JM, Caldwell JH, Stratton JR. Exercise training bradycardia is largely explained by reduced intrinsic heart rate. Int J Cardiol. 2016;222:213–6. https://doi.org/10.1016/j.ijcard.2016.07.203.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) – Finance Code 2022/02006-5 and 2021/14938-7.

Author information

Authors and Affiliations

Authors

Contributions

BAA, SV, and HCDS conceived and designed research; SV, BAA, and KPR performed experiments; BAA, SV, and HCDS analyzed data; BAA, SV, JT, and HCDS interpreted results of experiments; ACV, JVMBS, and TEVP prepared figures; BAA, ACV, and HCDS drafted manuscript; HCDS, BAA, and JT edited and revised manuscript; BAA, SV, ACV, JVMBS, TEVP, KPR, JT, and HCDS approved final version of manuscript.

Corresponding author

Correspondence to Hugo Celso Dutra de Souza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, B.A., Vieira, S., Veiga, A.C. et al. Physical exercise is essential for increasing ventricular contractility in hypertensive rats treated with losartan. Hypertens Res 47, 1350–1361 (2024). https://doi.org/10.1038/s41440-024-01611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01611-z

Keywords

Search

Quick links