Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NETs: an extracellular DNA network structure with implication for cardiovascular disease and cancer

Abstract

Cardiovascular (CV) diseases and tumors are best known for its high morbidity and mortality worldwide. There is a growing recognition of the association between CV diseases and tumorigenesis. In addition to CV damage caused by anti-tumor drugs and tumor-induced organ dysfunction, CV events themselves and their treatment may also have a role in promoting tumorigenesis. Therefore, Therefore, the diagnosis and treatment of the two kinds of diseases have entered the era of clinical convergence. Emerging evidence indicates significant biologic overlap between cancer and CV diseases, with the recognition of shared biologic mechanisms. Neutrophil extracellular traps (NETs) represent an immune mechanism of neutrophils promoting the development of tumors and their metastasis. It has been recently demonstrated that NETs exist in various stages of hypertension and heart failure, exacerbating disease progression. At present, most studies focus on the biological role of NETs in CV diseases and tumor respectively, and there are relatively few studies on the specific regulatory mechanisms and effects of NETs in cardiovascular diseases associated with tumors. In this narrative review, we summarize some recent basic and clinical findings on how NETs are involved in the pathogenesis of cardiovascular diseases associated with tumors. We also highlight that the development of treatments targeting NETs may be one of the effective ways to prevent and treat cardiovascular diseases associated with tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1859–922.

    Article  PubMed Central  Google Scholar 

  2. Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol. 2022;18:558–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banchs J, Lech T. Cardiovascular phenotypes and incident cardiovascular events in people with previous cancer. Heart 2023;109:974–6.

    Article  PubMed  Google Scholar 

  4. Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: the bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 2023;41:505–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23:274–88.

    Article  CAS  PubMed  Google Scholar 

  6. Yan MN, Gu YF, Sun HX, Ge QH. Neutrophil extracellular traps in tumor progression and immunotherapy. Front Immunol. 2023;14:1135086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shirakawa K, Sano M. Neutrophils and neutrophil extracellular traps in cardiovascular disease: an overview and potential therapeutic approaches. Biomedicines 2022;10:1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun S, Zou XY, Wang D, Liu YG, Zhang ZM, Guo JC, et al. IRGM/Irgm1 deficiency inhibits neutrophil-platelet interactions and thrombosis in experimental atherosclerosis and arterial injury. Biomed Pharmacother. 2023;158:114152.

    Article  CAS  PubMed  Google Scholar 

  9. Singh P, Kumar N, Singh M, Kaur M, Singh G, Narang A, et al. Neutrophil extracellular traps and NLRP3 inflammasome: a disturbing Duo in atherosclerosis, inflammation and atherothrombosis. Vaccines (Basel). 2023;11:261.

    Article  CAS  PubMed  Google Scholar 

  10. Tatsukawa Y, Hsu WL, Yamada M, Cologne JB, Suzuki G, Yamamoto H, et al. White blood cell count, especially neutrophil count, as a predictor of hypertension in a Japanese population. Hypertens Res. 2008;31:1391–7.

    Article  PubMed  Google Scholar 

  11. Ramasamy R, Maqbool M, Mohamed AL, Noah RM. Elevated neutrophil respiratory burst activity in essential hypertensive patients. Cell Immunol. 2010;263:230–4.

    Article  CAS  PubMed  Google Scholar 

  12. Li JH, Tong DX, Song B, Xie FY, Zhang GX, Hao X, et al. Inflammatory cytokines induce neutrophil extracellular traps interaction with activated platelets and endothelial cells exacerbate coagulation in moderate and severe essential hypertension. J Hypertens. 2022;40:2219–29.

    Article  CAS  PubMed  Google Scholar 

  13. McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Baban B, Sullivan JC, et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res. 2015;107:119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson MH, Collier A, Nicoll JJ, Mui r AL, Dawes J, Clarke BF, et al. Neutrophil count and activation in vascular disease. Scott Med J 1992;37:41–3.

    Article  CAS  PubMed  Google Scholar 

  15. El-Eshmawy MM, El-Adawy EH, Mousa AA, Zeidan AE, El-Baiomy AA, Abdel-Samie ER, et al. Elevated serum neutrophil elastase is related to prehypertension and airflow limitation in obese women. BMC Women’s Health. 2011;11:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krishnan J, de la Visitación N, Hennen EM, Amarnath V, Harrison DG, Patrick DM. IsoLGs (Isolevuglandins) Drive Neutrophil Migration in Hypertension and Are Essential for the Formation of Neutrophil Extracellular Traps. Hypertension 2022;79:1644–55.

    Article  CAS  PubMed  Google Scholar 

  17. Hofbauer T, Scherz T, Müller J, Heidari H, Staier N, Panzenböck A, et al. Arterial hypertension enhances neutrophil extracellular trap formation via an angiotensin-II-dependent pathway. Atherosclerosis 2017;263:67–68.

    Article  Google Scholar 

  18. Fang XH, Ma L, Wang YF, Ren F, Yu YQ, Yuan ZW, et al. Neutrophil extracellular traps accelerate vascular smooth muscle cell proliferation via Akt/CDKN1b/TK1 accompanying with the occurrence of hypertension. J Hypertens. 2022;40:2045–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kodigepalli KM, Bonifati S, Tirumuru N, Wu L. SAMHD1 modulates in vitro proliferation of acute myeloid leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis. Cell Cycle. 2018;17:1124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang XM, Wang PW, Zhang RL, Watanabe I, Chang E, Vinayachandran V, et al. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest. 2022;132:e147191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chrysanthopoulou A, Gkaliagkousi E, Lazaridis A, Arelaki S, Pateinakis P, Ntinopoulou M, et al. Angiotensin II triggers release of neutrophil extracellular traps, linking thrombo-inflammation with essential hypertension. JCI Insight. 2021;6:e148668.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saku K, Yokota S, Nishikawa T, Kinugawa K. Interventional heart failure therapy: A new concept fighting against heart failure. J Cardiol. 2022;80:101–9.

    Article  PubMed  Google Scholar 

  23. Redfield MM, Borlaug BA. Heart failure with preserved ejection fraction: a review. JAMA 2023;329:827–38.

    Article  PubMed  Google Scholar 

  24. Vulesevic B, Lavoie SS, Neagoe PE, Dumas E, Räkel A, White M, et al. CRP induces NETosis in heart failure patients with or without diabetes. Immunohorizons. 2019;3:378–88.

    Article  CAS  PubMed  Google Scholar 

  25. Shafqat A, Abdul Rab S, Ammar O, Salameh SA, Alkhudairi A, Kashir J, et al. Emerging role of neutrophil extracellular traps in the complications of diabetes mellitus. Front Med (Lausanne). 2022;9:995993.

    Article  PubMed  Google Scholar 

  26. Zhang XL, Wang TY, Chen Z, Wang HW, Yin Y, Wang L, et al. HMGB1-promoted neutrophil extracellular traps contribute to cardiac diastolic dysfunction in mice. J Am Heart Assoc. 2022;11:e023800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Charles E, Dumont BL, Bonneau S, Neagoe PE, Villeneuve L, Räkel A, et al. Angiopoietin 1 release from human neutrophils is independent from neutrophil extracellular traps (NETs). BMC Immunol. 2021;22:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao YS, Cong M, Li JT, He D, Wu QY, Tian P, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell. 2021;39:423–37.

    Article  CAS  PubMed  Google Scholar 

  29. Yang CH, Wang Z, Li LL, Zhang ZG, Jin XY, Wu P, et al. Aged neutrophils form mitochondria dependent vital NETs to promote breast cancer lung metastasis. J Immunother Cancer. 2021;9:e002875.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shi L, Yao HL, Liu Z, Xu M, Tsung A, Wang YM. Endogenous PAD4 in breast cancer cells mediates cancer extracellular chromatin network formation and promotes lung metastasis. Mol Cancer Res. 2020;18:735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang LB, Liu Q, Zhang XQ, Liu XW, Zhou BX, Chen JN, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 2020;583:133–8.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou JW, Yang YL, Gan TT, Li Y, Hu F, Hao NN, et al. Lung cancer cells release high mobility group box 1 and promote the formation of neutrophil extracellular traps. Oncol Lett. 2019;18:181–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Liu F, Chen L, Fang C, Li SY, Yuan SK, et al. Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-kB/NLRP3 inflammasome pathway. Front Immunol. 2022;13:867516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018;361:eaao4227.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang CF, Sun WY, Cui W, Li XK, Yao JL, Jia XY, et al. Procoagulant role of neutrophil extracellular traps in patients with gastric cancer. Int J Clin Exp Pathol. 2015;8:14075–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanamaru R, Ohzawa H, Miyato H, Matsumoto S, Haruta H, Kurashina K, et al. Low-density neutrophils (LDN) in postoperative abdominal cavity assist the peritoneal recurrence through the production of neutrophil extracellular traps (NETs). Sci Rep. 2018;8:632.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tao L, Xu M, Dai XJ, Ni TY, Li D, Jin F, et al. Polypharmacological profiles underlying the antitumor property of salvia miltiorrhiza root (Danshen) interfering with NOX-dependent neutrophil extracellular traps. Oxid Med Cell Longev. 2018;2018:4908328.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kumagai Y, Ohzawa H, Miyato H, Horie H, Hosoya Y, Lefor AK, et al. Surgical stress increases circulating low-density neutrophils which may promote tumor recurrence. J Surg Res. 2020;246:52–61.

    Article  CAS  PubMed  Google Scholar 

  39. Li R, Zou XM, Zhu T, Xu HY, Li XL, Zhu L. Destruction of neutrophil extracellular traps promotes the apoptosis and inhibits the invasion of gastric cancer cells by regulating the expression of Bcl-2, Bax and NF-κB. Onco Targets Ther. 2020;13:5271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang YY, Hu YY, Ma C, Sun H, Wei XL, Li M, et al. Diagnostic, therapeutic predictive, and prognostic value of neutrophil extracellular traps in patients with gastric adenocarcinoma. Front Oncol. 2020;10:1036.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rayes RF, Vourtzoumis P, Rjeily MB, Seth R, Bourdeau F, Giannias B, et al. Neutrophil extracellular trap-associated CEACAM1 as a putative therapeutic target to prevent metastatic progression of colon carcinoma. J Immunol. 2020;204:2285–94.

    Article  CAS  PubMed  Google Scholar 

  42. Shang A, Gu CZ, Zhou C, Yang YB, Chen C, Zeng BJ, et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Commun Signal. 2020;18:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang LY, Liu L, Zhang R, Hong J, Wang YQ, Wang J, et al. IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer. 2020;11:4384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xia YJ, He JY, Zhang HJ, Wang H, Tetz G, Maguire CA, et al. AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol Oncol. 2020;14:2920–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. 2019;5:e128008.

    Article  PubMed  Google Scholar 

  46. Yazdani HO, Roy E, Comerci AJ, van der Windt DJ, Zhang HJ, Huang H, et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. 2019;79:5626–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Richardson JJR, Hendrickse C, Gao-Smith F, Thickett DR. Neutrophil extracellular trap production in patients with colorectal cancer in vitro. Int J Inflam. 2017;2017:4915062.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arelaki S, Arampatzioglou A, Kambas K, Papagoras C, Miltiades P, Angelidou I, et al. Gradient infiltration of neutrophil extracellular traps in colon cancer and evidence for their involvement in tumour growth. PLoS One. 2016;11:e0154484.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76:1367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu MX, Li T, Li BR, Liu YM, Wang LX, Zhang JM, et al. Phosphatidylserine-exposing blood cells, microparticles and neutrophil extracellular traps increase procoagulant activity in patients with pancreatic cancer. Thromb Res. 2020;188:5–16.

    Article  CAS  PubMed  Google Scholar 

  51. Takesue S, Ohuchida K, Shinkawa T, Otsubo Y, Matsumoto S, Sagara A, et al. Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer‑associated fibroblasts. Int J Oncol. 2020;56:596–605.

    CAS  PubMed  Google Scholar 

  52. Jin W, Yin HJ, Li H, Yu XJ, Xu HX, Liu L. Neutrophil extracellular DNA traps promote pancreatic cancer cells migration and invasion by activating EGFR/ERK pathway. J Cell Mol Med. 2021;25:5443–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li M, Lin C, Deng H, Strnad J, Bernabei L, Vogl DT, et al. A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma. Mol Cancer Ther. 2020;19:1530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10:eaan8292.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zha CJ, Meng XQ, Li LL, Mi S, Qian D, Li ZW, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med. 2020;17:154–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schedel F, Mayer-Hain S, Pappelbaum KI, Metze D, Stock M, Goerge T, et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment Cell Melanoma Res. 2020;33:63–73.

    Article  CAS  PubMed  Google Scholar 

  57. Blenman KRM, Wang J, Cowper S, Bosenberg M. Pathology of spontaneous and immunotherapy-induced tumor regression in a murine model of melanoma. Pigment Cell Melanoma Res. 2019;32(May):448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhan X, Wu R, Kong XH, You Y, He K, Sun XY, et al. Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond). 2023;43:225–45.

    Article  PubMed  Google Scholar 

  59. Hu WX, Lee MLS, Bazhin AV, Guba M, Werner J, Nieß H. Neutrophil extracellular traps facilitate cancer metastasis: cellular mechanisms and therapeutic strategies. J Cancer Res Clin Oncol. 2023;149:2191–210.

    Article  PubMed  Google Scholar 

  60. Li JC, Zou XM, Yang SF, Jin JQ, Zhu L, Li CJ, et al. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer. World J Gastroenterol. 2022;28:3132–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Janus N, Launay-Vacher V, Byloos E, Machiels JP, Duck L, Kerger J, et al. Cancer and renal insufficiency results of the BIRMA study. Br J Cancer. 2010;103:1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Launay-Vacher V. Epidemiology of chronic kidney disease in cancer patients: lessons from the IRMA study group. Semin Nephrol. 2010;30:548–56.

    Article  PubMed  Google Scholar 

  63. Todorova VK, Hsu PC, Wei JY, Lopez-Candales A, Chen JZ, Joseph Su L, et al. Biomarkers of inflammation, hypercoagulability and endothelial injury predict early asymptomatic doxorubicin-induced cardiotoxicity in breast cancer patients. Am J Cancer Res. 2020;10:2933–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheng KH, Contreras GP, Yeh TY. Potential role of neutrophil extracellular traps in cardio-oncology. Int. J Mol Sci. 2022;23:35731. https://doi.org/10.3390/ijms23073573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guan TW, Zhang HB, Yang JM, Lin WR, Wang KN, Su M, et al. Increased risk of cardiovascular death in breast cancer patients without chemotherapy or (and) radiotherapy: a large population-based study. Front Oncol. 2021;10:619622.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cedervall J, Zhang YY, Huang H, Zhang L, Femel JL, Dimberg A, et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res. 2015;75:2653–62.

    Article  CAS  PubMed  Google Scholar 

  67. Alfaro C, Teijeira A, Oñate C, Pérez G, Sanmamed MF, Andueza MP, et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res. 2016;22:3924–36.

    Article  CAS  PubMed  Google Scholar 

  68. Cedervall J, Herre M, Dragomir A, Rabelo-Melo F, Svensson A, Thålin C, et al. Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology 2022;11:2049487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meijers WC, Maglione M, Bakker SJL, Oberhuber R, Kieneker LM, de Jong S, et al. Heart failure stimulates tumor growth by circulating factors. Circulation 2018;138:678–91.

    Article  CAS  PubMed  Google Scholar 

  70. Wohlfahrt P, Bruthans J, Krajčoviechová A, Šulc P, Linhart A, Filipovský J, Mayer O Jr, Widimský J Jr, Blaha M, Abrahámová J, et al. Systematic coronary risk evaluation (SCORE) and 20-year risk of cardiovascular mortality and cancer. Eur J Intern Med. 2020;79:63–69.

    Article  PubMed  Google Scholar 

  71. Meirovitz A, Gross M, Leibovici V, Sheva K, Popovzer A, Barak V. Clinical applicability of the proliferation marker thymidine kinase 1 in head and neck cancer patients. Anticancer Res. 2021;41:1083–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

CS and ZW received relevant funding from the National Natural Science Foundation of China (NSFC 82160089, 82060080), Gansu science and Technology Department Project (23JRRA1641, 23YFFA0038), Lanzhou University Medical Postgraduate Training Innovation Development Project (lzuyxcx-2022-128) and the project of the Cuying Science and Technology Innovation Project (CY2022-YB-A03, CY2022-MS-A06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xu, Y., Yu, F. et al. NETs: an extracellular DNA network structure with implication for cardiovascular disease and cancer. Hypertens Res 47, 1260–1272 (2024). https://doi.org/10.1038/s41440-023-01574-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01574-7

Keywords

Search

Quick links