Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2023 OSAKA
  • Published:

Angiotensin II type 1 receptor-associated protein deletion combined with angiotensin II stimulation accelerates the development of diabetic kidney disease in mice on a C57BL/6 strain

Abstract

The progress in the research field of diabetic kidney disease (DKD) has been disturbed by the lack of reliable animal models. Angiotensin II (Ang II) type 1 receptor (AT1R)-associated protein (ATRAP) promotes internalization of AT1R and selectively inhibits pathological AT1R signaling. In this study, we investigated whether overactivation of the renin-angiotensin system (RAS) through a combination of ATRAP deletion with Ang II stimulation developed a progressive DKD model in C57BL/6 mice, which are resistant to the development of kidney injury. Eight-week-old male systemic ATRAP-knockout mice on the C57BL/6 strain (KO) and their littermate wild-type mice (Ctrl) were divided into five groups: 1) Ctrl, 2) Ctrl-streptozotocin (STZ), 3) KO-STZ, 4) Ctrl-STZ-Ang II, and 5) KO-STZ-Ang II. Ang II was administered for 6 weeks from 4 weeks after STZ administration. At 10 weeks after STZ administration, mice were euthanized to evaluate kidney injuries. Neither ATRAP deletion alone nor Ang II stimulation alone developed a progressive DKD model in STZ-induced diabetic C57BL/6 mice. However, a combination of ATRAP deletion with Ang II stimulation accelerated the development of DKD as manifested by overt albuminuria, glomerular hypertrophy, podocyte loss, mesangial expansion, kidney interstitial fibrosis and functional insufficiency, concomitant with increased angiotensinogen and AT1R expression in the kidneys. In STZ-induced diabetic C57BL/6 mice that are resistant to the development of kidney injury, the combination of ATRAP deletion and Ang II stimulation accelerates the development of DKD, which may be associated with intrarenal RAS overactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are included within the paper. The datasets are available from the corresponding authors upon reasonable request.

References

  1. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37:2864–83.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94:26–39.

    Article  CAS  PubMed  Google Scholar 

  3. Lo KB, Rangaswami J, Vaduganathan M. Nonsteroidal mineralocorticoid receptor antagonists and cardiorenal outcomes in chronic kidney disease. Nephrol Dial Transplant. 2022;38:845–54.

  4. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

  5. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023;388:117–27.

    Article  CAS  PubMed  Google Scholar 

  6. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of Finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383:2219–29.

    Article  CAS  PubMed  Google Scholar 

  7. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385:2252–63.

    Article  CAS  PubMed  Google Scholar 

  8. Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa J, et al. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int. 2023;103:282–96.

    Article  CAS  PubMed  Google Scholar 

  9. Azushima K, Gurley SB, Coffman TM. Modelling diabetic nephropathy in mice. Nat Rev Nephrol. 2018;14:48–56.

    Article  CAS  PubMed  Google Scholar 

  10. Breyer MD, Böttinger E, Brosius FC 3rd, Coffman TM, Harris RC, Heilig CW, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2005;16:27–45.

    Article  PubMed  Google Scholar 

  11. Brosius FC 3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2009;20:2503–12.

    Article  PubMed  Google Scholar 

  12. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ. Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem. 1999;274:17058–62.

    Article  CAS  PubMed  Google Scholar 

  14. Tamura K, Tanaka Y, Tsurumi Y, Azuma K, Shigenaga A, Wakui H, et al. The role of angiotensin AT1 receptor-associated protein in renin-angiotensin system regulation and function. Curr Hypertens Rep. 2007;9:121–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wakui H. The pathophysiological role of angiotensin receptor-binding protein in hypertension and kidney diseases: Oshima Award Address 2019. Clin Exp Nephrol. 2020;24:289–94.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tamura K, Azushima K, Kinguchi S, Wakui H, Yamaji T. ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res. 2022;45:32–9.

    Article  CAS  PubMed  Google Scholar 

  17. Haruhara K, Suzuki T, Wakui H, Azushima K, Kurotaki D, Kawase W, et al. Deficiency of the kidney tubular angiotensin II type1 receptor-associated protein ATRAP exacerbates streptozotocin-induced diabetic glomerular injury via reducing protective macrophage polarization. Kidney Int. 2022;101:912–28.

    Article  CAS  PubMed  Google Scholar 

  18. Maeda A, Tamura K, Wakui H, Dejima T, Ohsawa M, Azushima K, et al. Angiotensin receptor-binding protein ATRAP/Agtrap inhibits metabolic dysfunction with visceral obesity. J Am Heart Assoc. 2013;2:e000312.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wakui H, Tamura K, Tanaka Y, Matsuda M, Bai Y, Dejima T, et al. Cardiac-specific activation of angiotensin II type 1 receptor-associated protein completely suppresses cardiac hypertrophy in chronic angiotensin II-infused mice. Hypertension. 2010;55:1157–64.

    Article  CAS  PubMed  Google Scholar 

  20. Ohsawa M, Tamura K, Wakui H, Maeda A, Dejima T, Kanaoka T, et al. Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension. Kidney Int. 2014;86:570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Azushima K, Ohki K, Wakui H, Uneda K, Haku S, Kobayashi R, et al. Adipocyte-specific enhancement of Angiotensin II Type 1 receptor-associated protein Ameliorates diet-induced visceral obesity and insulin resistance. J Am Heart Assoc. 2017;6:e004488.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tsurumi Y, Tamura K, Tanaka Y, Koide Y, Sakai M, Yabana M, et al. Interacting molecule of AT1 receptor, ATRAP, is colocalized with AT1 receptor in the mouse renal tubules. Kidney Int. 2006;69:488–94.

    Article  CAS  PubMed  Google Scholar 

  23. Wakui H, Tamura K, Matsuda M, Bai Y, Dejima T, Shigenaga A, et al. Intrarenal suppression of angiotensin II type 1 receptor binding molecule in angiotensin II-infused mice. Am J Physiol Renal Physiol. 2010;299:F991–1003.

    Article  CAS  PubMed  Google Scholar 

  24. Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, et al. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep. 2021;11:23587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17:2664–9.

    Article  CAS  PubMed  Google Scholar 

  26. Wakui H, Uneda K, Tamura K, Ohsawa M, Azushima K, Kobayashi R, et al. Renal tubule angiotensin II type 1 receptor-associated protein promotes natriuresis and inhibits salt-sensitive blood pressure elevation. J Am Heart Assoc. 2015;4:e001594.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kinguchi S, Wakui H, Azushima K, Haruhara K, Koguchi T, Ohki K, et al. Effects of ATRAP in renal proximal tubules on Angiotensin-dependent hypertension. J Am Heart Assoc. 2019;8:e012395.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Song S, Meyer M, Türk TR, Wilde B, Feldkamp T, Assert R, et al. Serum cystatin C in mouse models: a reliable and precise marker for renal function and superior to serum creatinine. Nephrol Dial Transplant. 2009;24:1157–61.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, Campbell-Thompson M, et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol. 2007;18:539–50.

    Article  CAS  PubMed  Google Scholar 

  30. Kanetsuna Y, Takahashi K, Nagata M, Gannon MA, Breyer MD, Harris RC, et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J Pathol. 2007;170:1473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest. 2008;88:515–28.

    Article  CAS  PubMed  Google Scholar 

  32. Forbes MS, Thornhill BA, Park MH, Chevalier RL. Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. Am J Pathol. 2007;170:87–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohki K, Wakui H, Azushima K, Uneda K, Haku S, Kobayashi R, et al. ATRAP expression in brown adipose tissue does not influence the development of diet-induced metabolic disorders in mice. Int J Mol Sci. 2017;18:676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakui H, Tamura K, Masuda S, Tsurumi-Ikeya Y, Fujita M, Maeda A, et al. Enhanced angiotensin receptor-associated protein in renal tubule suppresses angiotensin-dependent hypertension. Hypertension. 2013;61:1203–10.

    Article  CAS  PubMed  Google Scholar 

  35. Wakui H, Dejima T, Tamura K, Uneda K, Azuma K, Maeda A, et al. Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension. Cardiovasc Res. 2013;100:511–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wesseling S, Ishola DA Jr, Joles JA, Bluyssen HA, Koomans HA, Braam B. Resistance to oxidative stress by chronic infusion of angiotensin II in mouse kidney is not mediated by the AT2 receptor. Am J Physiol Renal Physiol. 2005;288:F1191–200.

    Article  CAS  PubMed  Google Scholar 

  37. Kirchhoff F, Krebs C, Abdulhag UN, Meyer-Schwesinger C, Maas R, Helmchen U, et al. Rapid development of severe end-organ damage in C57BL/6 mice by combining DOCA salt and angiotensin II. Kidney Int. 2008;73:643–50.

    Article  CAS  PubMed  Google Scholar 

  38. Kamiyama M, Farragut KM, Garner MK, Navar LG, Kobori H. Divergent localization of angiotensinogen mRNA and protein in proximal tubule segments of normal rat kidney. J Hypertens. 2012;30:2365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uneda K, Wakui H, Maeda A, Azushima K, Kobayashi R, Haku S, et al. Angiotensin II type 1 receptor-associated protein regulates kidney aging and lifespan independent of Angiotensin. J Am Heart Assoc. 2017;6:e006120.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Russo GT, De Cosmo S, Viazzi F, Mirijello A, Ceriello A, Guida P, et al. Diabetic kidney disease in the elderly: prevalence and clinical correlates. BMC Geriatr. 2018;18:38.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jiang W, Wang J, Shen X, Lu W, Wang Y, Li W, et al. Establishment and validation of a risk prediction model for early diabetic kidney disease based on a systematic review and meta-analysis of 20 cohorts. Diabetes Care. 2020;43:925–33.

    Article  CAS  PubMed  Google Scholar 

  42. Ruggenenti P, Cravedi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol. 2010;6:319–30.

    Article  CAS  PubMed  Google Scholar 

  43. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol. 2021;17:319–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Thomas M. Coffman (Duke-NUS Medical School, Duke University School of Medicine) for useful discussions. We also thank Editage for editing and reviewing the English in this manuscript.

Funding

This work was supported by grants from the Yokohama Foundation for Advancement of Medical Science; Uehara Memorial Foundation; Japan Society for the Promotion of Science; Japan Kidney Association-Nippon Boehringer Ingelheim Joint Research Program; Japanese Association of Dialysis Physicians; Salt Science Research Foundation; Strategic Research Project of Yokohama City University; Japan Agency for Medical Research and Development (AMED); Translational Research program; Strategic Promotion for Practical Application of Innovative Medical Technology (TR-SPRINT) from AMED; Moriya Scholarship Foundation; Bayer Scholarship for Cardiovascular Research; and Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Contributions

KA designed and conducted the research. STaguchi, KA, TY, AY, HW, and KT wrote the manuscript. STaguchi, KA, TS, EA, ST, KH, STsukamoto, RM, RK, SK, and HW performed the research. STaguchi and KA analyzed the data. KT supervised the research. All authors approved the final manuscript.

Corresponding authors

Correspondence to Kengo Azushima or Hiromichi Wakui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, S., Azushima, K., Yamaji, T. et al. Angiotensin II type 1 receptor-associated protein deletion combined with angiotensin II stimulation accelerates the development of diabetic kidney disease in mice on a C57BL/6 strain. Hypertens Res 47, 55–66 (2024). https://doi.org/10.1038/s41440-023-01496-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01496-4

Keywords

This article is cited by

Search

Quick links