Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nighttime blood pressure and glucose control impacts on left ventricular hypertrophy: The Japan Morning Surge Home Blood Pressure (J-HOP) Study

Abstract

Several studies investigated the association between nighttime blood pressure (BP) and left ventricular hypertrophy (LVH) in diabetes, but since most of these studies were conducted in diabetes populations only, they did not compare differences in the impact of nighttime BP on LVH in subjects without diabetes. Moreover, data about the impact of glucose control in diabetes on the relationship between nighttime BP and LVH are sparse. We classified 1277 adults (age 64.7 ± 11.8 years) performing ambulatory BP monitoring while enrolled as part of the Japan Morning Surge Home Blood Pressure (J-HOP) study into groups according to the control status of daytime BP (systolic BP [SBP] < 135 mmHg or ≥135 mmHg), nighttime BP (SBP < 120 mmHg or ≥120 mmHg), and diabetes (HbA1c < 7.0% or ≥7.0%). LVH was assessed by echocardiography. LVH according to echocardiographic criteria was identified in 33.7% of the participants. The group with poorly controlled diabetes plus uncontrolled nighttime BP (n = 90) had a 2.1-fold higher risk of LVH compared to the group with controlled nighttime BP and non-diabetes (n = 505) (odds ratio [OR] 2.10, 95% confidence interval [CI]: 1.29–3.44). No association was observed between uncontrolled daytime BP and diabetes for LVH. In the participants with poorly controlled diabetes (n = 146), uncontrolled nighttime BP posed a 3.1-fold higher risk of LVH compared to controlled nighttime BP (OR 3.12, 95%CI: 1.47–6.62). This association was not found in controlled diabetes. Uncontrolled nighttime BP was associated with a risk of LVH, especially among individuals with poorly controlled diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data underlying this paper cannot be shared publicly due to ethical reasons.

References

  1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  2. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.

    Article  CAS  PubMed  Google Scholar 

  3. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27:2458–64.

    Article  CAS  PubMed  Google Scholar 

  4. Cuspidi C, Facchetti R, Bombelli M, Tadic M, Sala C, Grassi G, et al. High Normal Blood Pressure and Left Ventricular Hypertrophy Echocardiographic Findings From the PAMELA Population. Hypertension (Dallas, Tex : 1979). 2019;73:612–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cuspidi C, Facchetti R, Bombelli M, Sala C, Negri F, Grassi G, et al. Nighttime blood pressure and new-onset left ventricular hypertrophy: findings from the Pamela population. Hypertension (Dallas, Tex : 1979). 2013;62:78–84.

    Article  CAS  PubMed  Google Scholar 

  6. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F, et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation. 1990;81:528–36.

    Article  CAS  PubMed  Google Scholar 

  7. Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, et al. Nighttime Blood Pressure Measured by Home Blood Pressure Monitoring as an Independent Predictor of Cardiovascular Events in General Practice. Hypertension (Dallas, Tex : 1979). 2019;73:1240–8.

    Article  CAS  PubMed  Google Scholar 

  8. Fujiwara T, Hoshide S, Kanegae H, Kario K. Cardiovascular Event Risks Associated With Masked Nocturnal Hypertension Defined by Home Blood Pressure Monitoring in the J-HOP Nocturnal Blood Pressure Study. Hypertension (Dallas, Tex : 1979). 2020;76:259–66.

    Article  CAS  PubMed  Google Scholar 

  9. Hoshide S, Kanegae H, Kario K. Nighttime home blood pressure as a mediator of N-terminal pro-brain natriuretic peptide in cardiovascular events. Hypertens Res : Off J Jpn Soc Hypertens. 2021;44:1138–46.

    Article  CAS  Google Scholar 

  10. Dawson A, Morris AD, Struthers AD. The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia. 2005;48:1971–9.

    Article  CAS  PubMed  Google Scholar 

  11. Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101:1787–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li T, Chen S, Guo X, Yang J, Sun Y. Impact of hypertension with or without diabetes on left ventricular remodeling in rural Chinese population: a cross-sectional study. BMC Cardiovasc Disord. 2017;17:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grossman E, Shemesh J, Shamiss A, Thaler M, Carroll J, Rosenthal T. Left ventricular mass in diabetes-hypertension. Arch Intern Med. 1992;152:1001–4.

    Article  CAS  PubMed  Google Scholar 

  14. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.

    Article  PubMed  Google Scholar 

  15. Cuspidi C, Vaccarella A, Leonetti G, Sala C. Ambulatory blood pressure and diabetes: targeting nondipping. Curr Diabetes Rev. 2010;6:111–5.

    Article  PubMed  Google Scholar 

  16. Draman MS, Dolan E, van der Poel L, Tun TK, McDermott JH, Sreenan S, et al. The importance of night-time systolic blood pressure in diabetic patients: Dublin Outcome Study. J Hypertens. 2015;33:1373–7.

    Article  CAS  PubMed  Google Scholar 

  17. Felício JS, Pacheco JT, Ferreira SR, Plavnik F, Moisés VA, Kohlmann O Jr, et al. Hyperglycemia and nocturnal systolic blood pressure are associated with left ventricular hypertrophy and diastolic dysfunction in hypertensive diabetic patients. Cardiovas Diabetol. 2006;5:19.

    Article  Google Scholar 

  18. Wijkman M, Länne T, Grodzinsky E, Ostgren CJ, Engvall J, Nystrom FH. Ambulatory systolic blood pressure predicts left ventricular mass in type 2 diabetes, independent of central systolic blood pressure. Blood Press Monit. 2012;17:139–44.

    Article  PubMed  Google Scholar 

  19. Rutter MK, McComb JM, Forster J, Brady S, Marshall SM. Increased left ventricular mass index and nocturnal systolic blood pressure in patients with Type 2 diabetes mellitus and microalbuminuria. Diabet Med :J Br Diabet Assoc. 2000;17:321–5.

    Article  CAS  Google Scholar 

  20. Yano Y, Hayakawa M, Kuroki K, Ueno H, Yamagishi S, Takeuchi M, et al. Nighttime blood pressure, nighttime glucose values, and target-organ damages in treated type 2 diabetes patients. Atherosclerosis. 2013;227:135–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hoshide S, Yano Y, Haimoto H, Yamagiwa K, Uchiba K, Nagasaka S, et al. Morning and Evening Home Blood Pressure and Risks of Incident Stroke and Coronary Artery Disease in the Japanese General Practice Population: The Japan Morning Surge-Home Blood Pressure Study. Hypertension (Dallas, Tex : 1979). 2016;68:54–61.

    Article  CAS  PubMed  Google Scholar 

  22. Echouffo-Tcheugui JB, Ndumele CE, Zhang S, Florido R, Matsushita K, Coresh J, et al. Diabetes and Progression of Heart Failure: The Atherosclerosis Risk In Communities (ARIC) Study. J Am Coll Cardiol. 2022;79:2285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Imai Y, Sasaki S, Minami N, Munakata M, Hashimoto J, Sakuma H, et al. The accuracy and performance of the A&D TM 2421, a new ambulatory blood pressure monitoring device based on the cuff-oscillometric method and the Korotkoff sound technique. Am J Hypertens. 1992;5:719–26.

    Article  CAS  PubMed  Google Scholar 

  24. Stergiou GS, Palatini P, Parati G, O'Brien E, Januszewicz A, Lurbe E, et al. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J Hypertens. 2021;39:1293–302.

    Article  CAS  PubMed  Google Scholar 

  25. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res : Off J Jpn Soc Hypertens. 2019;42:1235–481.

    Article  Google Scholar 

  26. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr : J Working Group Echocardiogr Eur Soc Cardiol. 2006;7:79–108.

    Article  Google Scholar 

  27. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  28. Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101:2271–6.

    Article  CAS  PubMed  Google Scholar 

  29. Palmieri V, Bella JN, Arnett DK, Liu JE, Oberman A, Schuck MY, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation. 2001;103:102–7.

    Article  CAS  PubMed  Google Scholar 

  30. van Bilsen M, Daniels A, Brouwers O, Janssen BJ, Derks WJ, Brouns AE, et al. Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice. PloS ONE. 2014;9:e85078.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu J, Yang X, Zhang P, Guo D, Xu B, Huang C, et al. Association of Urinary Sodium Excretion and Left Ventricular Hypertrophy in People With Type 2 Diabetes Mellitus: A Cross-Sectional Study. Front Endocrinol. 2021;12:728493.

    Article  Google Scholar 

  32. Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M, et al. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res. 2017;113:378–88.

    Article  CAS  PubMed  Google Scholar 

  33. Tang Z, Wang P, Dong C, Zhang J, Wang X, Pei H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. Oxid Med Cell Longev. 2022;2022:5913374.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gambardella S, Frontoni S, Spallone V, Maiello MR, Civetta E, Lanza G, et al. Increased left ventricular mass in normotensive diabetic patients with autonomic neuropathy. Am J Hypertens. 1993;6:97–102.

    Article  CAS  PubMed  Google Scholar 

  35. Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Investig. 1991;87:1643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nunoda S, Genda A, Sugihara N, Nakayama A, Mizuno S, Takeda R. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessels. 1985;1:43–7.

    Article  CAS  PubMed  Google Scholar 

  37. Aepfelbacher FC, Yeon SB, Weinrauch LA, D’Elia J, Burger AJ. Improved glycemic control induces regression of left ventricular mass in patients with type 1 diabetes mellitus. Int J Cardiol. 2004;94:47–51.

    Article  PubMed  Google Scholar 

  38. Felicio JS, Ferreira SR, Plavnik FL, Moisés V, Kohlmann O Jr, Ribeiro AB, et al. Effect of blood glucose on left ventricular mass in patients with hypertension and type 2 diabetes mellitus. Am J Hypertens. 2000;13:1149–54.

    Article  CAS  PubMed  Google Scholar 

  39. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J Diabetes. 2018;9:1–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gungor N, Bacha F, Saad R, Janosky J, Arslanian S. Youth type 2 diabetes: insulin resistance, beta-cell failure, or both? Diabetes Care. 2005;28:638–44.

    Article  CAS  PubMed  Google Scholar 

  41. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Investig. 1975;56:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime Blood Pressure Phenotype and Cardiovascular Prognosis: Practitioner-Based Nationwide JAMP Study. Circulation. 2020;142:1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J. 2020;41:3421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muiesan ML, Salvetti M, Rizzoni D, Castellano M, Donato F, Agabiti-Rosei E. Association of change in left ventricular mass with prognosis during long-term antihypertensive treatment. J Hypertens. 1995;13:1091–5.

    Article  CAS  PubMed  Google Scholar 

  45. Pierdomenico SD, Lapenna D, Cuccurullo F. Regression of echocardiographic left ventricular hypertrophy after 2 years of therapy reduces cardiovascular risk in patients with essential hypertension. Am J Hypertens. 2008;21:464–70.

    Article  PubMed  Google Scholar 

  46. Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension (Dallas, Tex : 1979). 2009;54:1084–91.

    Article  CAS  PubMed  Google Scholar 

  47. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. Jama. 2004;292:2350–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the numerous study investigators, fellows, nurses, and research coordinators who participated in the J-HOP study at the various study sites.

Funding

This study was financially supported in part by a grant from the 21st Century Center of Excellence Project run by Japan’s Ministry of Education, Culture, Sports, Science, and Technology (MEXT); a grant from the Foundation for Development of the Community (Tochigi); a grant from Omron Healthcare Co., Ltd; a Grant-in-Aid for Scientific Research (B; 21390247) from The Ministry of Education, Culture, Sports, Science, and Technology of Japan, 2009–2013; and funds from the MEXT-supported program for the Strategic Research Foundation at Private Universities, 2011–2015 Cooperative Basic and Clinical Research on Circadian Medicine (S1101022) to K. Kario. Funding sponsors had no role in forming study design and conducting of the study; the collection, management, analysis, and interpretation of the data; the preparation of the article; and decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuomi Kario.

Ethics declarations

Conflict of interest

KK has received research grants from Omron Healthcare Co., Ltd., A&D Co., Ltd., and Fukuda Denshi Co., Ltd. The other authors declare that they have no potential competing interests to report.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toriumi, S., Hoshide, S., Kabutoya, T. et al. Nighttime blood pressure and glucose control impacts on left ventricular hypertrophy: The Japan Morning Surge Home Blood Pressure (J-HOP) Study. Hypertens Res 47, 507–514 (2024). https://doi.org/10.1038/s41440-023-01487-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01487-5

Keywords

This article is cited by

Search

Quick links