Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of aerobic exercise on blood pressure in patients with hypertension: a systematic review and dose-response meta-analysis of randomized trials

This article has been updated

Abstract

We aimed to evaluate the dose-dependent effects of aerobic exercise on systolic (SBP) and diastolic blood pressure (DBP) and haemodynamic factors in adults with hypertension. PubMed, Scopus, and Web of Science were searched to April 2022 for randomized trials of aerobic exercise in adults with hypertension. We conducted a random-effects meta-analysis to estimate mean differences (MDs) and 95%CIs for each 30 min/week increase in aerobic exercise. The certainty of evidence was rated using the GRADE approach. The analysis of 34 trials with 1787 participants indicated that each 30 min/week aerobic exercise reduced SBP by 1.78 mmHg (95%CI: −2.22 to −1.33; n = 34, GRADE=low), DBP by 1.23 mmHg (95%CI: −1.53 to −0.93; n = 34, GRADE=moderate), resting heart rate (MD = −1.08 bpm, 95%CI: −1.46 to −0.71; n = 23, GRADE=low), and mean arterial pressure (MD = −1.37 mmHg, 95%CI: −1.80 to −0.93; n = 9, GRADE = low). A nonlinear dose-dependent decrement was seen on SBP and DBP, with the greatest decrement at 150 min/week (MD150 min/week = −7.23 mmHg, 95%CI: −9.08 to −5.39 for SBP and −5.58 mmHg, 95%CI: −6.90 to −4.27 for DBP). Aerobic exercise can lead to a large and clinically important reduction in blood pressure in a dose-dependent manner, with the greatest reduction at 150 min/week.

The dose-dependent effects of aerobic exercise on systolic and diastolic blood pressure and haemodynamic factors in adults with hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data indicated and analyzed for this study are available by request to the corresponding author.

Change history

  • 13 November 2023

    In the original version of this article, Abstract tagging is corrected. The original article has been corrected.

References

  1. Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:1269–324.

    Article  CAS  PubMed  Google Scholar 

  2. O’Hare ABAR. More than 700 million people with untreated hypertension. https://www.who.int/news/item/25-08-2021-more-than-700-million-people-with-untreated-hypertension.

  3. World Health Organization—a global brief on hypertension | The International Society of Hypertension 2017. http://ish-world.com/news/a/World-Health-Organization-A-Global-Brief-onHypertension/.

  4. Daskalopoulou SS, Rabi DM, Zarnke KB, Dasgupta K, Nerenberg K, Cloutier L, et al. The 2015 Canadian Hypertension Education Program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2015;31:549–68.

    Article  PubMed  Google Scholar 

  5. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press. 2014;23:3–16.

    Article  PubMed  Google Scholar 

  6. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.

    Article  CAS  PubMed  Google Scholar 

  7. Naci H, Salcher-Konrad M, Dias S, Blum MR, Sahoo SA, Nunan D, et al. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br J Sports Med. 2019;53:859–69.

    Article  PubMed  Google Scholar 

  8. Pescatello LS, Buchner DM, Jakicic JM, Powell KE, Kraus WE, Bloodgood B, et al. Physical activity to prevent and treat hypertension: a systematic review. Med Sci Sports Exerc. 2019;51:1314–23.

    Article  PubMed  Google Scholar 

  9. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology. 2013;28:330–58.

    Article  CAS  PubMed  Google Scholar 

  10. Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol. 2021;18:251–75.

    Article  CAS  PubMed  Google Scholar 

  11. Collier SR, Kanaley JA, Carhart R Jr., Frechette V, Tobin MM, Hall AK, et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008;22:678–86.

    Article  CAS  PubMed  Google Scholar 

  12. Medicine ACOS, Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s guidelines for exercise testing and prescription. Wolters Kluwer; 2018 https://books.google.com/books?id=m_L-jwEACAAJ.

  13. Wen H, Wang L. Reducing effect of aerobic exercise on blood pressure of essential hypertensive patients: a meta-analysis. Medicine. 2017;96:e6150.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharman JE, La Gerche A, Coombes JS. Exercise and cardiovascular risk in patients with hypertension. Am J Hypertens. 2015;28:147–58.

    Article  PubMed  Google Scholar 

  15. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons, Incorporated; 2019 https://books.google.com/books?id=pItOzQEACAAJ.

  16. Schunemann H. GRADE handbook for grading quality of evidence and strength of recommendation. 2008. https://www.cc-ims/net/gradepro.

  17. Jabbarzadeh Ganjeh B, Zeraattalab-Motlagh S, Jayedi A, Daneshvar M, Gohari Z, Noorozi R, et al. The effectiveness of aerobic exercise for hypertensive population: a systematic review and dose-response meta-analysis of randomized controlled trials. PROSPERO 2022 CRD42022329092. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022329092. 2022.

  18. Tsai JC, Yang HY, Wang WH, Hsieh MH, Chen PT, Kao CC, et al. The beneficial effect of regular endurance exercise training on blood pressure and quality of life in patients with hypertension. Clin Exp Hypertens. 2004;26:255–65.

    Article  PubMed  Google Scholar 

  19. Jayedi A, Emadi A, Shab-Bidar S.Dose-dependent effect of supervised aerobic exercise on HBA(1c) in patients with type 2 diabetes: a meta-analysis of randomized controlled trials.Sports Med.2022; https://doi.org/10.1007/s40279-022-01673-4.

    Article  PubMed  Google Scholar 

  20. Swain DP. Moderate or vigorous intensity exercise: which is better for improving aerobic fitness? Prev Cardiol. 2005;8:55–8.

    Article  PubMed  Google Scholar 

  21. Staying Active. https://www.hsph.harvard.edu/nutritionsource/staying-active/.

  22. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Puchau B, Zulet MA, de Echávarri AG, Hermsdorff HH, Martínez JA. Dietary total antioxidant capacity: a novel indicator of diet quality in healthy young adults. J Am Coll Nutr. 2009;28:648–56.

    Article  PubMed  Google Scholar 

  24. Chandler JCM, Li T, Page M, Welch V. Cochrane handbook for systematic reviews of interventions). Wiley: Hoboken; 2019.

  25. Higgins JPT, Deeks JJ. Selecting studies and collecting data. In: Cochrane Handbook for Systematic Reviews of Interventions: Cochrane book series. Chichester (UK): John Wiley & Sons; 2008, p. 151–185.

  26. Furukawa TA, Barbui C, Cipriani A, Brambilla P, Watanabe N. Imputing missing standard deviations in meta-analyses can provide accurate results. J Clin Epidemiol. 2006;59:7–10.

    Article  PubMed  Google Scholar 

  27. Crippa A, Orsini N. Dose-response meta-analysis of differences in means. BMC Med Res Methodol. 2016;16:91.

    Article  PubMed  PubMed Central  Google Scholar 

  28. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  29. Schandelmaier S, Briel M, Varadhan R, Schmid CH, Devasenapathy N, Hayward RA, et al. Development of the Instrument to assess the Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and meta-analyses. CMAJ. 2020;192:E901–e6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  32. Higgins JPSJ, Page MJ, Elbers RG, Sterne JA. Assessing risk of bias in a randomized trial. In: Cochrane handbook for systematic reviews of interventions. Chichester (UK): John Wiley & Sons; 2019, p. 205–228.

  33. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6. Rating the quality of evidence–imprecision. J Clin Epidemiol. 2011;64:1283–93.

    Article  PubMed  Google Scholar 

  34. Guyatt G, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. Corrigendum to GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol. 2011;64:1283–93

    Article  PubMed  Google Scholar 

  35. Goldenberg JZ, Day A, Brinkworth GD, Sato J, Yamada S, Jönsson T, et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. 2021;372:m4743.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003;41:582–92.

    Article  PubMed  Google Scholar 

  37. Ammar T. Effects of aerobic exercise on blood pressure and lipids in overweight hypertensive postmenopausal women. J Exerc Rehabil. 2015;11:145–50.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arija V, Villalobos F, Pedret R, Vinuesa A, Jovani D, Pascual G, et al. Physical activity, cardiovascular health, quality of life and blood pressure control in hypertensive subjects: randomized clinical trial. Health Qual Life Outcomes. 2018;16:184.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arsenault BJ, Côté M, Cartier A, Lemieux I, Després JP, Ross R, et al. Effect of exercise training on cardiometabolic risk markers among sedentary, but metabolically healthy overweight or obese post-menopausal women with elevated blood pressure. Atherosclerosis. 2009;207:530–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aweto HA, Owoeye OB, Akinbo SR, Onabajo AA. Effects of dance movement therapy on selected cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients. Nig Q J Hosp Med. 2012;22:125–9.

    CAS  PubMed  Google Scholar 

  41. Azadpour N, Tartibian B, Kosar SN. Effects of aerobic exercise training on ACE and ADRB2 gene expression, plasma angiotensin II level, and flow-mediated dilation: a study on obese postmenopausal women with prehypertension. Menopause J North Am Menopause Soc. 2017;24:269–77.

    Article  Google Scholar 

  42. Bertani RF, Campos GO, Perseguin DM, Bonardi JMT, Ferriolli E, Moriguti JC, et al. Resistance exercise training is more effective than interval aerobic training in reducing blood pressure during sleep in hypertensive elderly patients. J Strength Cond Res. 2018;32:2085–90.

    Article  PubMed  Google Scholar 

  43. Blumenthal JA, Siegel WC, Appelbaum M. Failure of exercise to reduce blood pressure in patients with mild hypertension: results of a randomized controlled trial. JAMA. 1991;266:2098–104.

    Article  CAS  PubMed  Google Scholar 

  44. Boeno FP, Ramis TR, Munhoz SV, Farinha JB, Moritz CEJ, Leal-Menezes R, et al. Effect of aerobic and resistance exercise training on inflammation, endothelial function and ambulatory blood pressure in middle-aged hypertensive patients. J Hypertens. 2020;38:2501–9.

    Article  CAS  PubMed  Google Scholar 

  45. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure—a randomized controlled trial. JAMA. 2007;297:2081–91.

    Article  CAS  PubMed  Google Scholar 

  46. Cononie CC, Graves JE, Pollock ML, Phillips MI, Sumners C, Hagberg JM. Effect of exercise training on blood pressure in 70- to 79-yr-old men and women. Med Sci Sports Exerc. 1991;23:505–11.

    CAS  PubMed  Google Scholar 

  47. Duncan JJ, Farr JE, Upton SJ, Hagan RD, Oglesby ME, Blair SN. The effects of aerobic exercise on plasma catecholamines and blood pressure in patients with mild essential hypertension. JAMA. 1985;254:2609–13.

    Article  CAS  PubMed  Google Scholar 

  48. Galdino G, Silva AM, Bogão JA Jr., Braz de Oliveira MP, Araújo HA, Oliveira MS, et al. Association between respiratory muscle strength and reduction of arterial blood pressure levels after aerobic training in hypertensive subjects. J Phys Ther Sci. 2016;28:3421–6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Georgiades A, Sherwood A, Gullette ECD, Babyak MA, Hinderliter A, Waugh R, et al. Effects of exercise and weight loss on mental stress-induced cardiovascular responses in individuals with high blood pressure. Hypertension. 2000;36:171–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hagberg JM, Montain SJ, Martin WH 3rd, Ehsani AA. Effect of exercise training in 60- to 69-year-old persons with essential hypertension. Am J Cardiol. 1989;64:348–53.

    Article  CAS  PubMed  Google Scholar 

  51. Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects. Circulation. 1999;100:1194–202.

    Article  CAS  PubMed  Google Scholar 

  52. Kaholokula JK, Look M, Mabellos T, Ahn HJ, Choi SY, Sinclair KA, et al. A cultural dance program improves hypertension control and cardiovascular disease risk in native Hawaiians: a randomized controlled trial. Ann Behav Med. 2021; https://doi.org/10.1093/abm/kaaa127.

  53. Knoepfli-Lenzin C, Sennhauser C, Toigo M, Boutellier U, Bangsbo J, Krustrup P, et al. Effects of a 12-week intervention period with football and running for habitually active men with mild hypertension. Scand J Med Sci Sports. 2010;20:72–9.

    Article  PubMed  Google Scholar 

  54. Kokkinos PF, Narayan P, Colleran JA, Pittaras A, Notargiacomo A, Reda D, et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med. 1995;333:1462–7.

    Article  CAS  PubMed  Google Scholar 

  55. Krustrup P, Skoradal MB, Randers MB, Weihe P, Uth J, Mortensen J, et al. Broad-spectrum health improvements with one year of soccer training in inactive mildly hypertensive middle-aged women. Scand J Med Sci Sports. 2017;27:1893–901.

    Article  CAS  PubMed  Google Scholar 

  56. Kucio C, Narloch D, Kucio E, Kurek J. The application of Nordic walking in the treatment hypertension and obesity. Fam Med Prim Care Rev. 2017;19:144–8.

    Article  Google Scholar 

  57. Lamina S. Effects of continuous and interval training programs in the management of hypertension: a randomized controlled trial. J Clin Hypertens. 2010;12:841–9.

    Article  Google Scholar 

  58. Laterza MC, de Matos L, Trombetta IC, Braga AMW, Roveda F, Alves M, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49:1298–306.

    Article  CAS  PubMed  Google Scholar 

  59. Liang JW, Zhang XY, Xia WH, Tong XZ, Qiu YX, Qiu YM, et al. Promotion of aerobic exercise induced angiogenesis is associated with decline in blood pressure in hypertension result of EXCAVATION-CHN1. Hypertension. 2021;77:1141–53.

    Article  CAS  PubMed  Google Scholar 

  60. Maruf FA, Akinpelu AO, Salako BL, Akinyemi JO. Effects of aerobic dance training on blood pressure in individuals with uncontrolled hypertension on two antihypertensive drugs: a randomized clinical trial. J Am Soc Hypertens. 2016;10:336–45.

    Article  PubMed  Google Scholar 

  61. Motlagh Z, Hidarnia A, Kaveh MH, Kojuri J. Effect of theory-based training intervention on physical activity and blood pressure in hypertensive patients: a randomized control trial. Iran Red Crescent Medical J. 2017;19:1–7.

  62. Nualnim N, Parkhurst K, Dhindsa M, Tarumi T, Vavrek J, Tanaka H. Effects of swimming training on blood pressure and vascular function in adults >50 years of age. Am J Cardiol. 2012;109:1005–10.

    Article  PubMed  Google Scholar 

  63. Pagonas N, Dimeo F, Bauer F, Seibert F, Kiziler F, Zidek W, et al. The impact of aerobic exercise on blood pressure variability. J Hum Hypertens. 2014;28:367–71.

    Article  CAS  PubMed  Google Scholar 

  64. Ramos RM, Coelho-Júnior HJ, do Prado RCR, da Silva RS, Asano RY, Prestes J, et al. Moderate aerobic training decreases blood pressure but no other cardiovascular risk factors in hypertensive overweight/obese elderly patients. Gerontol Geriatr Med. 2018;4:2333721418808645.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ruangthai R, Phoemsapthawee J. Combined exercise training improves blood pressure and antioxidant capacity in elderly individuals with hypertension. J Exerc Sci Fit. 2019;17:67–76.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sakai T, Ideishi M, Miura S, Maeda H, Tashiro E, Koga M, et al. Mild exercise activates renal dopamine system in mild hypertensives. J Hum Hypertens. 1998;12:355–62.

    Article  CAS  PubMed  Google Scholar 

  67. Saptharishi L, Soudarssanane M, Thiruselvakumar D, Navasakthi D, Mathanraj S, Karthigeyan M, et al. Community-based randomized controlled trial of non-pharmacological interventions in prevention and control of hypertension among young adults. Indian J Community Med. 2009;34:329–34.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Staffileno BA, Braun LT, Rosenson RS. The accumulative effects of physical activity in hypertensive post-menopausal women. J Cardiovasc Risk. 2001;8:283–90.

    Article  CAS  PubMed  Google Scholar 

  69. Staffileno BA, Minnick A, Coke LA, Hollenberg SM. Blood pressure responses to lifestyle physical activity among young, hypertension-prone African-American women. J Cardiovasc Nurs. 2007;22:107–17.

    Article  PubMed  Google Scholar 

  70. Tanabe Y, Urata H, Kiyonaga A, Ikeda M, Tanaka H, Shindo M, et al. Changes in serum concentrations of taurine and other amino acids in clinical antihypertensive exercise therapy. Clin Exp Hypertens A. 1989;11:149–65.

    CAS  PubMed  Google Scholar 

  71. Tsai JC, Chang WY, Kao CC, Lu MS, Chen YJ, Chan P. Beneficial effect on blood pressure and lipid profile by programmed exercise training in Taiwanese patients with mild hypertension. Clin Exp Hypertens. 2002;24:315–24.

    Article  CAS  PubMed  Google Scholar 

  72. Tsai JC, Liu JC, Kao CC, Tomlinson B, Kao PF, Chen JW, et al. Beneficial effects on blood pressure and lipid profile of programmed exercise training in subjects with white coat hypertension. Am J Hypertens. 2002;15:571–6.

    Article  PubMed  Google Scholar 

  73. Wong A, Kwak YS, Scott SD, Pekas EJ, Son WM, Kim JS, et al. The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension. Menopause- J North Am Menopause Soc. 2019;26:653–8.

    Article  Google Scholar 

  74. Yilmaz BC, Guclu MB, Keles MN, Tacoy GA, Cengel A. Effects of upper extremity aerobic exercise training on oxygen consumption, exercise capacity, dyspnea and quality of life in patients with pulmonary arterial hypertension. Heart Lung. 2020;49:564–71.

    Article  PubMed  Google Scholar 

  75. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    Article  PubMed  Google Scholar 

  76. Cao L, Li X, Yan P, Wang X, Li M, Li R, et al. The effectiveness of aerobic exercise for hypertensive population: a systematic review and meta-analysis. J Clin Hypertens. 2019;21:868–76.

    Article  Google Scholar 

  77. Lee SH, Chae YR. Characteristics of aerobic exercise as determinants of blood pressure control in hypertensive patients: a systematic review and meta-analysis. J Korean Acad Nurs. 2020;50:740–56.

    Article  PubMed  Google Scholar 

  78. Barcelos G, Heberle I, Coneglian J, Vieira B, Delevatti R, Gerage A. Effects of aerobic training progression on blood pressure in individuals with hypertension: a systematic review with meta-analysis and meta-regression. https://doi.org/10.21203/rs.3.rs-156120/v1)2021.

  79. Ruivo JA, Alcântara P. Hypertension and exercise. Rev Port Cardiol. 2012;31:151–8.

    Article  PubMed  Google Scholar 

  80. Hu G, Wang Z, Zhang R, Sun W, Chen X. The role of apelin/apelin receptor in energy metabolism and water homeostasis: a comprehensive narrative review. Front Physiol. 2021;12:632886.

  81. Igarashi Y, Akazawa N, Maeda S. Regular aerobic exercise and blood pressure in East Asians: a meta-analysis of randomized controlled trials. Clin Exp Hypertens. 2018;40:378–89.

    Article  PubMed  Google Scholar 

  82. Saco-Ledo G, Valenzuela PL, Ruiz-Hurtado G, Ruilope LM, Lucia A. Exercise reduces ambulatory blood pressure in patients with hypertension: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2020;9:e018487.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cardoso CG Jr., Gomides RS, Queiroz AC, Pinto LG, da Silveira Lobo F, Tinucci T, et al. Acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure. Clinics. 2010;65:317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Börjesson M, Onerup A, Lundqvist S, Dahlöf B. Physical activity and exercise lower blood pressure in individuals with hypertension: narrative review of 27 RCTs. Br J Sports Med. 2016;50:356–61.

    Article  PubMed  Google Scholar 

  85. Aldred EM, Buck C, Vall K. The nervous system. In: Aldred EM, Buck C, Vall K (eds). Pharmacology. Churchill Livingstone: Edinburgh; 2009, p. 235–46. https://doi.org/10.1016/B978-0-443-06898-0.00031-1.

  86. Pang MY, Charlesworth SA, Lau RW, Chung RC. Using aerobic exercise to improve health outcomes and quality of life in stroke: evidence-based exercise prescription recommendations. Cerebrovasc Dis. 2013;35:7–22.

    Article  PubMed  Google Scholar 

  87. Morris NR, Kermeen FD, Jones AW, Lee JY, Holland AE. Exercise-based rehabilitation programmes for pulmonary hypertension. Cochrane Database Syst Rev. 2023;3:Cd011285.

    PubMed  Google Scholar 

  88. Physical activity. https://www.who.int/news-room/fact-sheets/detail/physical-activity.

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Bahareh Jabbarzadeh Ganjeh made the greatest contribution to the paper.

Author information

Authors and Affiliations

Authors

Contributions

SS-B designed the study. BJG, SZM, and ZG: conducted the systematic search and data extraction; SZM and AJ: analyzed the data; BJG, SZM, MD, and RN: wrote the first draft; SZM, SS-B, MSG, NM, RK, and AJ: entirely revised the manuscript; SSB, had main responsibility for the final manuscript; and all authors: read and affirmed the final manuscript.

Corresponding author

Correspondence to Sakineh Shab-Bidar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbarzadeh Ganjeh, B., Zeraattalab-Motlagh, S., Jayedi, A. et al. Effects of aerobic exercise on blood pressure in patients with hypertension: a systematic review and dose-response meta-analysis of randomized trials. Hypertens Res 47, 385–398 (2024). https://doi.org/10.1038/s41440-023-01467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01467-9

Keywords

This article is cited by

Search

Quick links