Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2023 OSAKA
  • Published:

Mitochondrial DNA is a key driver in cigarette smoke extract-induced IL-6 expression

Abstract

Smoking is an independent risk factor for atherosclerosis, the primary pathogenesis of which is inflammation. We recently reported that cigarette smoke extract (CSE) causes cytosolic and extracellular accumulation of both nuclear (n) and mitochondrial (mt) DNA, which leads to inflammation in human umbilical vein endothelial cells (HUVECs). In this study, we examined whether inflammation induction depends more on cytosolic nDNA or mtDNA, and which chemical constituents of CSE are involved. Acrolein (ACR), methyl vinyl ketone (MVK), and 2-cyclopenten-1-one (CPO) were used in the experiments, as these are the major cytotoxic factors in CSE in various cell types. Stimulation with ACR, MVK, or CPO alone resulted in the accumulation of DNA double-strand breaks (DSBs), but not oxidative DNA damage, accumulation of cytosolic DNA, or increased expression of inflammatory cytokines. Simultaneous administration of all three constituents (ALL) resulted in oxidative DNA damage in both the nucleus and mitochondria, accumulation of DSBs, reduced mitochondrial membrane potential, induction of minority mitochondrial outer membrane permeabilization, accumulation of cytosolic free DNA, and increased expression of inflammatory cytokines such as IL-6 and IL-1α. Treatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, suppressed oxidative DNA damage and the increased expression of IL-6 and IL-1α induced by ALL or CSE. The ALL- or CSE-induced increase in IL-6 expression, but not that of IL-1α, was suppressed by mtDNA depletion. In conclusion, ACR, MVK, and CPO may strongly contribute to CSE-induced inflammation. More importantly, cytosolic free mtDNA is thought to play an important role in IL-6 expression, a central mediator of inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43:1731–7.

    Article  PubMed  CAS  Google Scholar 

  2. Yamaguchi Y, Nasu F, Harada A, Kunitomo M. Oxidants in the gas phase of cigarette smoke pass through the lung alveolar wall and raise systemic oxidative stress. J Pharmacol Sci. 2007;103:275–82.

    Article  PubMed  CAS  Google Scholar 

  3. Ueda K, Sakai C, Ishida T, Morita K, Kobayashi Y, Horikoshi Y, et al. Cigarette smoke induces mitochondrial DNA damage and activates cGAS-STING pathway: application to a biomarker for atherosclerosis. Clin Sci (Lond). 2023;137:163–80.

    Article  PubMed  CAS  Google Scholar 

  4. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993;686:12–27. discussion 27–8.

    Article  PubMed  CAS  Google Scholar 

  5. Jaimes EA, DeMaster EG, Tian RX, Raij L. Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler Thromb Vasc Biol. 2004;24:1031–6.

    Article  PubMed  CAS  Google Scholar 

  6. Noya Y, Seki K, Asano H, Mai Y, Horinouchi T, Higashi T, et al. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity. Toxicology. 2013;314:1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Sampilvanjil A, Karasawa T, Yamada N, Komada T, Higashi T, Baatarjav C, et al. Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2020;318:H508–18.

    Article  PubMed  CAS  Google Scholar 

  8. Asano H, Horinouchi T, Mai Y, Sawada O, Fujii S, Nishiya T, et al. Nicotine- and tar-free cigarette smoke induces cell damage through reactive oxygen species newly generated by PKC-dependent activation of NADPH oxidase. J Pharmacol Sci. 2012;118:275–87.

    Article  PubMed  CAS  Google Scholar 

  9. Ishida M, Ishida T, Tashiro S, Uchida H, Sakai C, Hironobe N, et al. Smoking cessation reverses DNA double-strand breaks in human mononuclear cells. PLoS ONE. 2014;9:e103993.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hayashi Y, Yoshida M, Yamato M, Ide T, Wu Z, Ochi-Shindou M, et al. Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci. 2008;28:8624–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tumurkhuu G, Shimada K, Dagvadorj J, Crother TR, Zhang W, Luthringer D, et al. Ogg1-Dependent DNA Repair Regulates NLRP3 Inflammasome and Prevents Atherosclerosis. Circ Res. 2016;119:e76–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sakai C, Ishida M, Ohba H, Yamashita H, Uchida H, Yoshizumi M, et al. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS ONE. 2017;12:e0187934.

    Article  PubMed  PubMed Central  Google Scholar 

  13. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wiseman A, Attardi G. Reversible tenfod reduction in mitochondria DNA content of human cells treated with ethidium bromide. Mol Gen Genet. 1978;167:51–63.

    Article  PubMed  CAS  Google Scholar 

  15. Hayakawa T, Noda M, Yasuda K, Yorifuji H, Taniguchi S, Miwa I, et al. Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. J Biol Chem. 1998;273:20300–7.

    Article  PubMed  CAS  Google Scholar 

  16. Warren EB, Aicher AE, Fessel JP, Konradi C. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism. PLoS ONE. 2017;12:e0190456.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell. 2020;183:636–49.e18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Phillips NR, Sprouse ML, Roby RK. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. Sci Rep. 2014;4:3887.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bratic I, Hench J, Trifunovic A. Caenorhabditis elegans as a model system for mtDNA replication defects. Methods. 2010;51:437–43.

    Article  PubMed  CAS  Google Scholar 

  20. Atkinson J, Bezak E, Kempson I. Imaging DNA double-strand breaks - are we there yet? Nat Rev Mol Cell Biol. 2022;23:579–80.

    Article  PubMed  CAS  Google Scholar 

  21. Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, et al. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat Res. 2015;183:417–31.

    Article  PubMed  CAS  Google Scholar 

  22. Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 2013;39:482–95.

    Article  PubMed  CAS  Google Scholar 

  23. Shen YJ, Le Bert N, Chitre AA, Koo CX, Nga XH, Ho SS, et al. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep. 2015;11:460–73.

    Article  PubMed  CAS  Google Scholar 

  24. McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359:eaao6047.

  25. Chang YC, Hu CC, Tseng TH, Tai KW, Lii CK, Chou MY. Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts. J Oral Pathol Med. 2001;30:458–64.

    Article  PubMed  CAS  Google Scholar 

  26. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842:1240–7.

    Article  PubMed  CAS  Google Scholar 

  28. Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell. 2015;57:860–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pham PT, Fukuda D, Nishimoto S, Kim-Kaneyama JR, Lei XF, Takahashi Y, et al. STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases. Eur Heart J. 2021;42:4336–48.

    Article  PubMed  CAS  Google Scholar 

  30. Liu Q, Cheng Z, Huang B, Luo S, Guo Y. Palmitic acid promotes endothelial-to-mesenchymal transition via activation of the cytosolic DNA-sensing cGAS-STING pathway. Arch Biochem Biophys. 2022;727:109321.

    Article  PubMed  CAS  Google Scholar 

  31. McCarthy DA, Clark RR, Bartling TR, Trebak M, Melendez JA. Redox control of the senescence regulator interleukin-1α and the secretory phenotype. J Biol Chem. 2013;288:32149–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Frisch SM. Interleukin-1α: Novel functions in cell senescence and antiviral response. Cytokine. 2022;154:155875.

    Article  PubMed  CAS  Google Scholar 

  33. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA. 2009;106:17031–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kinnula VL. Production and degradation of oxygen metabolites during inflammatory states in the human lung. Curr Drug Targets Inflamm Allergy. 2005;4:465–70.

    Article  PubMed  CAS  Google Scholar 

  35. Wu CC, Hsieh CW, Lai PH, Lin JB, Liu YC, Wung BS. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein. Toxicol Appl Pharmacol. 2006;214:244–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by Grants-in-Aid for Scientific Research (KAKENHI #21K080290 to MI, KAKENHI #22K160760 to CS, and KAKENHI#23K07557 to TI), a research grant from the Tsuchiya Medical Foundation to MI, and the Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University, Nagasaki University, and Fukushima Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MI; Methodology, YK and CS; Validation, TI, and YN; Formal Analysis, YK and MI; Investigation, YK, CS, and MN; Resources, KK, DN, HK, TM, JT, and AN; Writing—Original Draft Preparation, YK and MI; Writing—Review & Editing, TI and YN; Visualization, YK; Supervision, MI; Project Administration, MI; Funding Acquisition, MI and TI.

Corresponding author

Correspondence to Mari Ishida.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, Y., Sakai, C., Ishida, T. et al. Mitochondrial DNA is a key driver in cigarette smoke extract-induced IL-6 expression. Hypertens Res 47, 88–101 (2024). https://doi.org/10.1038/s41440-023-01463-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01463-z

Keywords

This article is cited by

Search

Quick links