Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

The (pro)renin receptor as a pharmacological target in cardiorenal diseases

Abstract

The (pro)renin receptor ((P)RR) is not only a member of the renin-angiotensin system (RAS) but also exerts several RAS-independent functions due to its multiple signal transductions pathways. In this mini-review, we shortly discuss the molecular functions of this receptor and its pathophysiological significance with a focus on cardiorenal diseases. Finally, we provide a short summary regarding a drug discovery and drug development program on small molecule-based renin/ prorenin receptor blockers (RERBs).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nguyen G, Burckle CA, Sraer JD. Renin/prorenin-receptor biochemistry and functional significance. Curr Hypertens Rep. 2004;6:129–32.

    Article  PubMed  Google Scholar 

  3. Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res. 2006;99:1355–66.

    Article  CAS  PubMed  Google Scholar 

  4. Schefe JH, Neumann C, Goebel M, Danser J, Kirsch S, Gust R, et al. Prorenin engages the (pro)renin receptor like renin and both ligand activities are unopposed by aliskiren. J Hypertens. 2008;26:1787–94.

    Article  CAS  PubMed  Google Scholar 

  5. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, et al. Requirement of prorenin receptor and vacuolar H + -ATPase-mediated acidification for Wnt signaling. Science. 2010;327:459–63.

    Article  CAS  PubMed  Google Scholar 

  6. Buechling T, Bartscherer K, Ohkawara B, Chaudhary V, Spirohn K, Niehrs C, et al. Wnt/Frizzled signaling requires dPRR, the Drosophila homolog of the prorenin receptor. Curr Biol. 2010;20:1263–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hermle T, Guida MC, Beck S, Helmstädter S, Simons M. Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. Embo J. 2013;32:245–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blankesteijn WM, van de Schans VA, ter Horst P, Smits JF. The Wnt/frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharm Sci. 2008;29:175–80.

    Article  CAS  PubMed  Google Scholar 

  9. Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol. 2009;20:1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/beta-catenin signaling. J Am Soc Nephrol. 2015;26:107–20.

    Article  CAS  PubMed  Google Scholar 

  11. Bernhard SM, Seidel K, Schmitz J, Klare S, Kirsch S, Schrezenmeier E, et al. The (pro)renin receptor ((P)RR) can act as a repressor of Wnt signalling. Biochem Pharm. 2012;84:1643–50.

    Article  CAS  PubMed  Google Scholar 

  12. Kirsch S, Schrezenmeier E, Klare S, Zaade D, Seidel K, Schmitz J, et al. The (pro)renin receptor mediates constitutive PLZF-independent pro-proliferative effects which are inhibited by bafilomycin but not genistein. Int J Mol Med. 2014;33:795–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanda A, Noda K, Ishida S. ATP6AP2/(pro)renin receptor contributes to glucose metabolism via stabilizing the pyruvate dehydrogenase E1 beta subunit. J Biol Chem. 2015;290:9690–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soro-Paavonen A, Forbes JM. Novel therapeutics for diabetic micro- and macrovascular complications. Curr Med Chem. 2006;13:1777–88.

    Article  CAS  PubMed  Google Scholar 

  15. Ogura S, Shimosawa T. Oxidative stress and organ damages. Curr Hypertens Rep. 2014;16:452.

    Article  PubMed  Google Scholar 

  16. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  17. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 2009;53:1077–82.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshikawa A, Aizaki Y, Kusano K, Kishi F, Susumu T, Iida S, et al. The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res. 2011;34:599–605.

    Article  CAS  PubMed  Google Scholar 

  19. Nakagawa T, Suzuki-Nakagawa C, Watanabe A, Asami E, Matsumoto M, Nakano M, et al. Site-1 protease is required for the generation of soluble (pro)renin receptor. J Biochem. 2017;161:369–79.

    Article  CAS  PubMed  Google Scholar 

  20. Kinouchi K, Ichihara A, Sano M, Sun-Wada GH, Wada Y, Ochi H, et al. The role of individual domains and the significance of shedding of ATP6AP2/(pro)renin receptor in vacuolar H(+)-ATPase biogenesis. PLoS One. 2013;8:e78603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Funke-Kaiser H, Zollmann FS, Schefe JH, Unger T. Signal transduction of the (pro)renin receptor as a novel therapeutic target for preventing end-organ damage. Hypertens Res. 2010;33:98–104.

    Article  CAS  PubMed  Google Scholar 

  22. Krop M, Lu X, Danser AH, Meima ME. The (pro)renin receptor. A decade of research: what have we learned? Pflug Arch. 2013;465:87–97.

    Article  CAS  Google Scholar 

  23. Nelson N, Harvey WR. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev. 1999;79:361–85.

    Article  CAS  PubMed  Google Scholar 

  24. Advani A, Kelly DJ, Cox AJ, White KE, Advani SL, Thai K, et al. The (Pro)renin receptor: site-specific and functional linkage to the vacuolar H + -ATPase in the kidney. Hypertension. 2009;54:261–9.

    Article  CAS  PubMed  Google Scholar 

  25. Nabi AH, Biswas KB, Nakagawa T, Ichihara A, Inagami T, Suzuki F. ‘Decoy peptide’ region (RIFLKRMPSI) of prorenin prosegment plays a crucial role in prorenin binding to the (pro)renin receptor. Int J Mol Med. 2009;24:83–9.

    CAS  PubMed  Google Scholar 

  26. Nabi AH, Biswas KB, Nakagawa T, Ichihara A, Inagami T, Suzuki F. Prorenin has high affinity multiple binding sites for (pro)renin receptor. Biochim Biophys Acta. 2009;1794:1838–47.

    Article  CAS  PubMed  Google Scholar 

  27. Ichihara A, Kaneshiro Y, Takemitsu T, Suzuki F, Nakagawa T, Nishiyama A, et al. “Receptor-associated prorenin system” contributes to hypertensive end-organ damage. J Hypertens. 2005;23:P1.197.

    Google Scholar 

  28. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Suzuki F, Nakagawa T, et al. Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension. 2006;47:894–900.

    Article  CAS  PubMed  Google Scholar 

  29. Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest. 2004;114:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, et al. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2006;17:1950–61.

    Article  CAS  PubMed  Google Scholar 

  31. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl J Med. 2001;345:851–60.

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi H, Ichihara A, Kaneshiro Y, Inomata K, Sakoda M, Takemitsu T, et al. Regression of nephropathy developed in diabetes by (Pro)renin receptor blockade. J Am Soc Nephrol. 2007;18:2054–61.

    Article  CAS  PubMed  Google Scholar 

  33. Susic D, Zhou X, Frohlich ED, Lippton H, Knight M. Cardiovascular effects of prorenin blockade in genetically spontaneously hypertensive rats on normal and high-salt diet. Am J Physiol Heart Circ Physiol. 2008;295:H1117–21.

    Article  CAS  PubMed  Google Scholar 

  34. Lu X, Garrelds IM, Wagner CA, Danser AH, Meima ME. (Pro)renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H + -ATPase activity in MDCK.C11 collecting duct cells. Am J Physiol Ren Physiol. 2013;305:F417–25.

    Article  CAS  Google Scholar 

  35. Sanchez-Guerrero E, Hernandez-Campos ME, Correa-Basurto J, Lopez-Sanchez P, Tolentino-Lopez LE. Three-dimensional structure and molecular dynamics studies of prorrenin/renin receptor: description of the active site. Mol Biosyst. 2015;11:2520–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ryuzaki M, Ichihara A, Ohshima Y, Sakoda M, Kurauchi-Mito A, Narita T, et al. Involvement of activated prorenin in the pathogenesis of slowly progressive nephropathy in the non-clipped kidney of two kidney, one-clip hypertension. Hypertens Res. 2011;34:301–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kiyomoto H, Moriwaki K. Chronic blockade of the (pro)renin receptor ameliorates the kidney damage in the non-clipped kidney of Goldblatt hypertension. Hypertens Res. 2011;34:289–91.

    Article  CAS  PubMed  Google Scholar 

  38. Nagai Y, Ichihara A, Nakano D, Kimura S, Pelisch N, Fujisawa Y, et al. Possible contribution of the non-proteolytic activation of prorenin to the development of insulin resistance in fructose-fed rats. Exp Physiol. 2009;94:1016–23.

    Article  CAS  PubMed  Google Scholar 

  39. Lavoi JL. Methods of treating or preventing obesity and obesity-related hypertension. Patent application 2009;WO 2009/143619 A1.

  40. Satofuka S, Ichihara A, Nagai N, Koto T, Shinoda H, Noda K, et al. Role of nonproteolytically activated prorenin in pathologic, but not physiologic, retinal neovascularization. Invest Ophthalmol Vis Sci. 2007;48:422–9.

    Article  PubMed  Google Scholar 

  41. Satofuka S, Ichihara A, Nagai N, Noda K, Ozawa Y, Fukamizu A, et al. (Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation. Diabetes. 2009;58:1625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilkinson-Berka JL, Heine R, Tan G, Tikellis C, Cooper ME, Nguyen G, et al. The role of the (pro)renin receptor in developing ischaemic and diabetic retina. J Renin Angiotensin Aldosterone Syst. 2008;9:S8.

    Google Scholar 

  43. Ellmers LJ, Rademaker MT, Charles CJ, Yandle TG, Richards AM. (Pro)renin receptor blockade ameliorates cardiac injury and remodeling and improves function after myocardial Infarction. J Card Fail. 2016;22:64–72.

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC, et al. Intracerebroventricular infusion of the (pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension. 2015;65:352–61.

    Article  CAS  PubMed  Google Scholar 

  45. Kinouchi K, Ichihara A, Sano M, Sun-Wada GH, Wada Y, Kurauchi-Mito A, et al. The (pro)renin receptor/ATP6AP2 is essential for vacuolar H + -ATPase assembly in murine cardiomyocytes. Circ Res. 2010;107:30–4.

    Article  CAS  PubMed  Google Scholar 

  46. Riediger F, Quack I, Qadri F, Hartleben B, Park JK, Potthoff SA, et al. Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol. 2011;22:2193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K, et al. Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol. 2011;22:2203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Attina T, Camidge R, Newby DE, Webb DJ. Endothelin antagonism in pulmonary hypertension, heart failure, and beyond. Heart. 2005;91:825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kempf H, Linares C, Corvol P, Gasc JM. Pharmacological inactivation of the endothelin type A receptor in the early chick embryo: a model of mispatterning of the branchial arch derivatives. Development. 1998;125:4931–41.

    Article  CAS  PubMed  Google Scholar 

  50. Teague SJ. Learning lessons from drugs that have recently entered the market. Drug Discov Today. 2011;16:398–411.

    Article  PubMed  Google Scholar 

  51. Khakoo AY, Sidman RL, Pasqualini R, Arap W. Does the renin-angiotensin system participate in regulation of human vasculogenesis and angiogenesis? Cancer Res. 2008;68:9112–5.

    Article  CAS  PubMed  Google Scholar 

  52. Schaefer C, Peters P, Miller RK Drug during pregnancy and lactation, 2nd edn. Academic Press: London, UK, 2007

  53. Tekturna (aliskiren), Prescribing Information, T2007-05/T2007-06. 2007. https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021985lbl.pdf.

  54. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci USA. 2007;104:8685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bagnato A, Natali PG. Endothelin receptors as novel targets in tumor therapy. J Transl Med. 2004;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lahav R, Heffner G, Patterson PH. An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc Natl Acad Sci USA. 1999;96:11496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13:140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burckle CA, Jan Danser AH, Müller DN, Garrelds IM, Gasc JM, Popova E, et al. Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension. 2006;47:552–6.

    Article  CAS  PubMed  Google Scholar 

  59. Kaneshiro Y, Ichihara A, Sakoda M, Takemitsu T, Nabi AH, Uddin MN, et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. In: J Am Soc Nephrol. 18. United States, 2007, 1789–95.

  60. Moilanen AM, Rysä J, Serpi R, Mustonen E, Szabo Z, Aro J, et al. (Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function. PLoS One. 2012;7:e41404.

  61. Lian H, Wang X, Wang J, Liu N, Zhang L, Lu Y, et al. Heart-specific overexpression of (pro)renin receptor induces atrial fibrillation in mice. Int J Cardiol. 2015;184:28–35.

    Article  PubMed  Google Scholar 

  62. Hirose T, Hashimoto M, Totsune K, Metoki H, Asayama K, Kikuya M, et al. Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study. Am J Hypertens. 2009;22:294–9.

    Article  CAS  PubMed  Google Scholar 

  63. Ott C, Schneider MP, Delles C, Schlaich MP, Hilgers KF, Schmieder RE. Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet Genomics. 2011;21:347–9.

    Article  CAS  PubMed  Google Scholar 

  64. Brugts JJ, Isaacs A, de Maat MP, Boersma E, van Duijn CM, Akkerhuis KM, et al. A pharmacogenetic analysis of determinants of hypertension and blood pressure response to angiotensin-converting enzyme inhibitor therapy in patients with vascular disease and healthy individuals. J Hypertens. 2011;29:509–19.

    Article  CAS  PubMed  Google Scholar 

  65. Hirose T, Hashimoto M, Totsune K, Metoki H, Hara A, Satoh M, et al. Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens Res. 2011;34:530–5.

    Article  CAS  PubMed  Google Scholar 

  66. Quadri SS, Culver S, Siragy HM. Prorenin receptor mediates inflammation in renal ischemia. Clin Exp Pharm Physiol. 2018;45:133–9.

    Article  CAS  Google Scholar 

  67. Fang H, Deng M, Zhang L, Lu A, Su J, Xu C, et al. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am J Physiol Ren Physiol. 2018;315:F1759–68.

    Article  CAS  Google Scholar 

  68. Hu J, Tan Y, Chen Y, Mo S, Hekking B, Su J, et al. Role of (pro)renin receptor in cyclosporin A-induced nephropathy. Am J Physiol Ren Physiol. 2022;322:F437–48.

    Article  CAS  Google Scholar 

  69. Wang Y, Wang Y, Xue K, Wang H, Zhou J, Gao F, et al. (Pro)renin receptor antagonist PRO20 attenuates nephrectomy-induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/beta-catenin signaling. Physiol Rep. 2021;9:e14881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Z, Zhou L, Wang Y, Miao J, Hong X, Hou FF, et al. (Pro)renin receptor is an amplifier of Wnt/beta-catenin signaling in kidney injury and fibrosis. J Am Soc Nephrol. 2017;28:2393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu Y, Zuo S, Li X, Fan J, Cao X, Yu X, et al. Interaction between V-ATPase B2 and (pro) renin receptors in promoting the progression of renal tubulointerstitial fibrosis. Sci Rep. 2016;6:25035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshida A, Kanamori H, Naruse G, Minatoguchi S, Iwasa M, Yamada Y, et al. (Pro)renin receptor blockade ameliorates heart failure caused by chronic kidney disease. J Card Fail. 2019;25:286–300.

  73. Xiong J, Cao X, Qiao S, Yu S, Li L, Yu Y, et al. (Pro)renin receptor is involved in myocardial damage in alcoholic cardiomyopathy. Alcohol Clin Exp Res. 2019;43:2344–53.

    Article  CAS  PubMed  Google Scholar 

  74. Dong X, Yu S, Wang Y, Yang M, Xiong J, Hei N, et al. (Pro)renin receptor-mediated myocardial injury, apoptosis, and inflammatory response in rats with diabetic cardiomyopathy. J Biol Chem. 2019;294:8218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang J, Cheng YJ, Luo CJ, Yu J. Inhibitory effect of (pro)renin receptor decoy inhibitor PRO20 on endoplasmic reticulum stress during cardiac remodeling. Front Pharm. 2022;13:940365.

    Article  CAS  Google Scholar 

  76. Ma H, Dong XF, Cao XR, Hei NH, Li JL, Wang YL, et al. Pro-renin receptor overexpression promotes angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout mice. Hum Gene Ther. 2020;31:639–50.

    Article  CAS  PubMed  Google Scholar 

  77. Peng K, Lu X, Wang F, Nau A, Chen R, Zhou SF, et al. Collecting duct (pro)renin receptor targets ENaC to mediate angiotensin II-induced hypertension. Am J Physiol Ren Physiol. 2017;312:F245–53.

    Article  CAS  Google Scholar 

  78. Quadri SS, Culver S, Ramkumar N, Kohan DE, Siragy HM. (Pro)Renin receptor mediates obesity-induced antinatriuresis and elevated blood pressure via upregulation of the renal epithelial sodium channel. PLoS One. 2018;13:e0202419.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hsieh YC, Wu PS, Lin YT, Huang YH, Hou MC, Lee KC, et al. (Pro)renin receptor inhibition attenuated liver steatosis, inflammation, and fibrosis in mice with steatohepatitis. Faseb J. 2022;36:e22526.

    Article  CAS  PubMed  Google Scholar 

  80. Shamansurova Z, Tan P, Ahmed B, Pepin E, Seda O, Lavoie JL. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight. Mol Metab. 2016;5:959–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Watanabe N, Morimoto S, Fujiwara T, Suzuki T, Taniguchi K, Ando T, et al. Association between soluble (Pro)renin receptor concentration in cord blood and small for gestational age birth: a cross-sectional study. PLoS One. 2013;8:e60036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Watanabe N, Bokuda K, Fujiwara T, Suzuki T, Mito A, Morimoto S, et al. Soluble (pro)renin receptor and blood pressure during pregnancy: a prospective cohort study. Hypertension 2012;60:1250–6.

    Article  CAS  PubMed  Google Scholar 

  83. Watanabe N, Morimoto S, Fujiwara T, Suzuki T, Taniguchi K, Mori F, et al. Prediction of gestational diabetes mellitus by soluble (pro)renin receptor during the first trimester. J Clin Endocrinol Metab. 2013;98:2528–35.

    Article  CAS  PubMed  Google Scholar 

  84. Hamada K, Taniguchi Y, Shimamura Y, Inoue K, Ogata K, Ishihara M, et al. Serum level of soluble (pro)renin receptor is modulated in chronic kidney disease. Clin Exp Nephrol. 2013;17:848–56.

    Article  CAS  PubMed  Google Scholar 

  85. Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Abe T, et al. Increased plasma soluble (pro)renin receptor levels are correlated with renal dysfunction in patients with heart failure. Int J Cardiol. 2013;168:4313–4.

    Article  PubMed  Google Scholar 

  86. Morimoto S, Ando T, Niiyama M, Seki Y, Yoshida N, Watanabe D, et al. Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertens Res. 2014;37:642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qin M, Xu C, Yu J. The soluble (pro)renin receptor in health and diseases: Foe or friend? J Pharm Exp Ther. 2021;378:251–61.

    Article  CAS  Google Scholar 

  88. Yang T. Soluble (pro)renin receptor in hypertension. Nephron. 2023;147:234–43.

  89. Ramkumar N, Stuart D, Peterson CS, Hu C, Wheatley W, Min Cho J, et al. Loss of soluble (pro)renin receptor attenuates angiotensin-II induced hypertension and renal injury. Circ Res. 2021;129:50–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang F, Chen Y, Zou CJ, Luo R, Yang T. Mutagenesis of the cleavage site of pro renin receptor abrogates angiotensin II-induced hypertension in mice. Hypertension. 2021;78:115–27.

    Article  CAS  PubMed  Google Scholar 

  91. Fu Z, Zheng H, Kaewsaro K, Lambert J, Chen Y, Yang T. Mutagenesis of the cleavage site of (pro)renin receptor abrogates aldosterone-salt-induced hypertension and renal injury in mice. Am J Physiol Ren Physiol. 2023;324:F1–11.

    Article  CAS  Google Scholar 

  92. Wang B, Jie H, Wang S, Dong B, Zou Y. The role of (pro)renin receptor and its soluble form in cardiovascular diseases. Front Cardiovasc Med. 2023;10:1086603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Abbas YM, Wu D, Bueler SA, Robinson CV, Rubinstein JL. Structure of V-ATPase from the mammalian brain. Science. 2020;367:1240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Patel NR, Rajan KC, Blanks A, Li Y, Prieto MC, Meadows SM. Endothelial cell polarity and extracellular matrix composition require functional ATP6AP2 during developmental and pathological angiogenesis. JCI Insight. 2022;7:e154379.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang J, Nishiyama A, Matsuyama M, Wang Z, Yuan Y. The (pro)renin receptor: a novel biomarker and potential therapeutic target for various cancers. Cell Commun Signal. 2020;18:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ouyang X, Xu C. Targeting the (pro)renin receptor in cancers: from signaling to pathophysiological effects. J Cancer Res Clin Oncol. 2023;149:2595–605.

    Article  CAS  PubMed  Google Scholar 

  97. Nielsch U, Schäfer S, Wild H, Busch A. One target-multiple indications: a call for an integrated common mechanisms strategy. Drug Discov Today. 2007;12:1025–31.

    Article  CAS  PubMed  Google Scholar 

  98. Pinter M, Jain RK. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci Transl Med. 2017;9:eaan5616.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moulton KS. Plaque angiogenesis and atherosclerosis. Curr Atheroscler Rep. 2001;3:225–33.

    Article  CAS  PubMed  Google Scholar 

  101. Hoshijima M, Chien KR. Mixed signals in heart failure: cancer rules. J Clin Invest. 2002;109:849–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Network TCGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  103. Berk BC. Angiotensin type 2 receptor (AT2R): a challenging twin. Sci Stke. 2003;2003:Pe16.

    Article  PubMed  Google Scholar 

  104. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. Embo J. 2000;19:2537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res. 2007;74:196–206.

    Article  CAS  PubMed  Google Scholar 

  106. Gudsoorkar P, Ruf R, Adnani H, Safdar K, Sparks MA. Onco-hypertension: an emerging specialty. Adv Chronic Kidney Dis. 2021;28:477–89.e1.

    Article  PubMed  Google Scholar 

  107. Cosmai L, Porta C, Gallieni M, Perazella MA. Onco-nephrology: a decalogue. Nephrol Dial Transpl. 2016;31:515–9.

    Article  Google Scholar 

  108. Vudatha V, Devarakonda T, Liu C, Freudenberger DC, Riner AN, Herremans KM, et al. Review of mechanisms and treatment of cancer-induced cardiac cachexia. Cells. 2022;11:1040.

  109. Schrezenmeier E, Zollmann FS, Seidel K, Böhm C, Schmerbach K, Kroh M, et al. Moderate correlations of in vitro versus in vivo pharmacokinetics questioning the need of early microsomal stability testing. Pharmacology. 2012;90:307–15.

    Article  CAS  PubMed  Google Scholar 

  110. Yang T. Crosstalk between (Pro)renin receptor and COX-2 in the renal medulla during angiotensin II-induced hypertension. Curr Opin Pharm. 2015;21:89–94.

    Article  CAS  Google Scholar 

  111. Ramkumar N, Kohan DE. The (pro)renin receptor: an emerging player in hypertension and metabolic syndrome. Kidney Int. 2019;95:1041–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The constant scientific and fatherly support of Prof. Werner Skuballa concerning RERBs is greatly acknowledged.

Funding

The work on RERBs was supported by grants from the BMBF (GO-Bio programme, No. 0315092 and VIP programme, No. 0275 03V0367), the Investitionsbank Berlin (IBB) (ProFIT programme, No. 10138510; Europäischer Fonds für regionale Entwicklung (EFRE) of the European Union (EU)), by the Stiftung Charité and the Berlin Institute of Health (BIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Funke-Kaiser.

Ethics declarations

Conflict of interest

The authors are cofounders of the CCR Pharma (CCRP) Therapeutics GmbH, a spin-off company from the Charité focused on the development of small molecule renin/ prorenin receptor blockers.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funke-Kaiser, H., Unger, T. The (pro)renin receptor as a pharmacological target in cardiorenal diseases. Hypertens Res 46, 2527–2534 (2023). https://doi.org/10.1038/s41440-023-01424-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01424-6

Keywords

Search

Quick links