Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aortic smooth muscle TRPV4 channels regulate vasoconstriction in high salt-induced hypertension

A Comment to this article was published on 17 August 2023

Abstract

Recent studies have focused on the contribution of vascular endothelial transient receptor potential vanilloid 4 (TRPV4) channels to hypertension. However, in hypertension, TRPV4 channels in vascular smooth muscle remain unexplored. In the present study, we performed wire myograph experiments in isolated aortas from endothelial cell specific TRPV4 channel knockout (TRPV4EC−/−) mice to demonstrate that GSK1016790A (a specific TRPV4 channel agonist) triggered aortic smooth muscle-dependent contractions from mice on a normal-salt diet, and the contractions were enhanced in high-salt diet (HSD) mice. Intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ imaging assays showed that TRPV4-induced [Ca2+]i was significantly higher in aortic smooth muscle cells (ASMCs) from HSD-induced hypertensive mice, and application of an inositol trisphosphate receptor (IP3R) inhibitor markedly attenuated TRPV4-induced [Ca2+]i. IP3R2 expression was enhanced in ASMCs from HSD-induced hypertensive mice and the contractile response induced by TRPV4 was inhibited by the IP3R inhibitor. Whole-transcriptome analysis by RNA-seq and western blot assays revealed the involvement of interferon regulatory factor 7 (IRF7) in TRPV4–IRF7–IP3R2 signaling in HSD-induced hypertension. These results suggested that TRPV4 channels regulate smooth muscle-dependent contractions in high salt-induced hypertension, and this contraction involves increased [Ca2+]i, IP3R2, and IRF7 activity. Our study revealed a considerable effect of TRPV4 channels in smooth muscle-dependent contraction in mice during high-salt induced hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Wilson C, Zhang X, Buckley C, Heathcote HR, Lee MD, McCarron JG. Increased vascular contractility in hypertension results from impaired endothelial calcium signaling. Hypertension. 2019;74:1200–14.

    Article  CAS  PubMed  Google Scholar 

  2. Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol. 2015;593:3013–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Savoia C, Burger D, Nishigaki N, Montezano A, Touyz RM. Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med. 2011;13:e11.

    Article  PubMed  Google Scholar 

  4. Montezano AC, Tsiropoulou S, Dulak-Lis M, Harvey A, Camargo Lde L, Touyz RM. Redox signaling, Nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens. 2015;24:425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ikebe M. Regulation of the function of mammalian myosin and its conformational change. Biochem Biophys Res Commun. 2008;369:157–64.

    Article  CAS  PubMed  Google Scholar 

  6. Walsh MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life. 2011;63:987–1000.

    Article  CAS  PubMed  Google Scholar 

  7. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114:529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goulopoulou S, Webb RC. Symphony of vascular contraction: how smooth muscle cells lose harmony to signal increased vascular resistance in hypertension. Hypertension. 2014;63:e33–9.

    Article  PubMed  Google Scholar 

  9. Misarkova E, Behuliak M, Bencze M, Zicha J. Excitation-contraction coupling and excitation-transcription coupling in blood vessels: their possible interactions in hypertensive vascular remodeling. Physiol Res. 2016;65:173–91.

    Article  CAS  PubMed  Google Scholar 

  10. Sukumaran SV, Singh TU, Parida S, Narasimha Reddy ChE, Thangamalai R, Kandasamy K, et al. TRPV4 channel activation leads to endothelium-dependent relaxation mediated by nitric oxide and endothelium-derived hyperpolarizing factor in rat pulmonary artery. Pharmacol Res. 2013;78:18–27.

    Article  CAS  PubMed  Google Scholar 

  11. Filosa JA, Yao X, Rath G. TRPV4 and the regulation of vascular tone. J Cardiovasc Pharmacol. 2013;61:113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Earley S, Heppner TJ, Nelson MT, Brayden JE. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res. 2005;97:1270–9.

    Article  CAS  PubMed  Google Scholar 

  13. Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol. 2009;297:H1096–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, et al. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res. 2005;97:908–15.

    Article  CAS  PubMed  Google Scholar 

  15. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA. 2004;101:396–401.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424:434–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gao M, Han J, Zhu Y, Tang C, Liu L, Xiao W, et al. Blocking endothelial TRPV4-Nox2 interaction helps reduce ROS production and inflammation, and improves vascular function in obese mice. J Mol Cell Cardiol. 2021;157:66–76.

    Article  CAS  PubMed  Google Scholar 

  18. Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol. 2010;103:2–17.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang P, Sun C, Li H, Tang C, Kan H, Yang Z, et al. TRPV4 (transient receptor potential vanilloid 4) mediates endothelium-dependent contractions in the aortas of hypertensive mice. Hypertension. 2018;71:134–42.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Y, Chu Y, Wang S, Tang J, Li H, Feng L, et al. Vascular smooth muscle TRPV4 (transient receptor potential vanilloid family member 4) channels regulate vasoconstriction and blood pressure in obesity. Hypertension. 2023;80:757–70.

    Article  CAS  PubMed  Google Scholar 

  21. Chen YL, Daneva Z, Kuppusamy M, Ottolini M, Baker TM, Klimentova E, et al. Novel smooth muscle Ca(2+)-signaling nanodomains in blood pressure regulation. Circulation. 2022;146:548–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2006;290:L1267–76.

    Article  CAS  PubMed  Google Scholar 

  23. Ma J, Hou D, Wei Z, Zhu J, Lu H, Li Z, et al. Tanshinone IIA attenuates cerebral aneurysm formation by inhibiting the NF‑kappaB‑mediated inflammatory response. Mol Med Rep. 2019;20:1621–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng Y, Zuo W, Shen D, Cui K, Huang M, Zhang D, et al. Mechanosensitive TRPV4 channel-induced extracellular ATP accumulation at the acupoint mediates acupuncture analgesia of ankle arthritis in rats. Life. 2021;11:513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shao J, Han J, Zhu Y, Mao A, Wang Z, Zhang K, et al. Curcumin induces endothelium-dependent relaxation by activating endothelial TRPV4 channels. J Cardiovasc Transl Res. 2019;12:600–7.

    Article  PubMed  Google Scholar 

  26. Ma X, Qiu S, Luo J, Ma Y, Ngai CY, Shen B, et al. Functional role of vanilloid transient receptor potential 4-canonical transient receptor potential 1 complex in flow-induced Ca2+ influx. Arterioscler Thromb Vasc Biol. 2010;30:851–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, et al. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science. 2012;336:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, et al. Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci USA. 2008;105:9627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bishara NB, Murphy TV, Hill MA. Capacitative Ca(2+) entry in vascular endothelial cells is mediated via pathways sensitive to 2 aminoethoxydiphenyl borate and xestospongin C. Br J Pharmacol. 2002;135:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilkerson MK, Heppner TJ, Bonev AD, Nelson MT. Inositol trisphosphate receptor calcium release is required for cerebral artery smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol. 2006;290:H240–7.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH. Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol. 2008;295:C1376–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saleh SN, Greenwood IA. Activation of chloride currents in murine portal vein smooth muscle cells by membrane depolarization involves intracellular calcium release. Am J Physiol Cell Physiol. 2005;288:C122–31.

    Article  CAS  PubMed  Google Scholar 

  33. Johny JP, Plank MJ, David T. Importance of altered levels of SERCA, IP(3)R, and RyR in vascular smooth muscle cell. Biophys J. 2017;112:265–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Navarro-Dorado J, Garcia-Alonso M, van Breemen C, Tejerina T, Fameli N. Calcium oscillations in human mesenteric vascular smooth muscle. Biochem Biophys Res Commun. 2014;445:84–8.

    Article  CAS  PubMed  Google Scholar 

  35. Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I. Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res. 2008;80:445–52.

    Article  CAS  PubMed  Google Scholar 

  36. Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J Pharmacol Exp Ther. 2008;326:443–52.

    Article  CAS  PubMed  Google Scholar 

  37. Saifeddine M, El-Daly M, Mihara K, Bunnett NW, McIntyre P, Altier C, et al. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature. Br J Pharmacol. 2015;172:2493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Milan A, Degli Esposti D, Salvetti M, Izzo R, Moreo A, Pucci G, et al. Prevalence of proximal ascending aorta and target organ damage in hypertensive patients: the multicentric ARGO-SIIA project (Aortic RemodellinG in hypertensiOn of the Italian Society of Hypertension). J Hypertens. 2019;37:57–64.

    Article  CAS  PubMed  Google Scholar 

  39. Leone D, Airale L, Bernardi S, Mingrone G, Astarita A, Cesareo M, et al. Prognostic role of the ascending aorta dilatation in patients with arterial hypertension. J Hypertens. 2021;39:1163–9.

    Article  CAS  PubMed  Google Scholar 

  40. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116:1007–21.

    Article  CAS  PubMed  Google Scholar 

  41. Lau OC, Shen B, Wong CO, Tjong YW, Lo CY, Wang HC, et al. TRPC5 channels participate in pressure-sensing in aortic baroreceptors. Nat Commun. 2016;7:11947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seki T, Goto K, Kiyohara K, Kansui Y, Murakami N, Haga Y, et al. Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small-conductance of Ca2+-activated K+ channels underpins impaired endothelium-dependent hyperpolarization in hypertension. Hypertension. 2017;69:143–53.

    Article  CAS  PubMed  Google Scholar 

  43. Baylie RL, Brayden JE. TRPV channels and vascular function. Acta Physiol. 2011;203:99–116.

    Article  CAS  Google Scholar 

  44. Bubolz AH, Mendoza SA, Zheng X, Zinkevich NS, Li R, Gutterman DD, et al. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca2+ entry and mitochondrial ROS signaling. Am J Physiol Heart Circ Physiol. 2012;302:H634–42.

    Article  CAS  PubMed  Google Scholar 

  45. Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, et al. TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol. 2010;298:H466–76.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol. 2018;153:91–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch. 2018;470:1271–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev. 2004;56:439–513.

    Article  CAS  PubMed  Google Scholar 

  49. Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002;32:235–49.

    Article  CAS  PubMed  Google Scholar 

  50. Edwards CL, Best SE, Gun SY, Claser C, James KR, de Oca MM, et al. Spatiotemporal requirements for IRF7 in mediating type I IFN-dependent susceptibility to blood-stage Plasmodium infection. Eur J Immunol. 2015;45:130–41.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang DS, Liu Y, Zhou H, Zhang Y, Zhang XD, Zhang XF, et al. Interferon regulatory factor 7 functions as a novel negative regulator of pathological cardiac hypertrophy. Hypertension. 2014;63:713–22.

    Article  CAS  PubMed  Google Scholar 

  52. Wu M, Skaug B, Bi X, Mills T, Salazar G, Zhou X, et al. Interferon regulatory factor 7 (IRF7) represents a link between inflammation and fibrosis in the pathogenesis of systemic sclerosis. Ann Rheum Dis. 2019;78:1583–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Iain C. Bruce for critical reading of the article.

Funding

This work was supported by the National Natural Science Foundation of China [81970397 and 82200463], the Postdoctoral Research funding program of Jiangsu Province [2020Z427], and the Wuxi Health Commission [2020ZHZD02].

Author information

Authors and Affiliations

Authors

Contributions

XW and QM designed the research. XW, YDP, YZZ, and FY performed the whole-transcriptome analysis by RNA-seq and western blot assays and analysis. YFP, XFW, and LG did the wire myograph experiments. YFP, TZ, XW, and LF did the [Ca2+]i and Ca2+ imaging assays. XW wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qingyou Meng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Peng, Y., Peng, Y. et al. Aortic smooth muscle TRPV4 channels regulate vasoconstriction in high salt-induced hypertension. Hypertens Res 46, 2356–2367 (2023). https://doi.org/10.1038/s41440-023-01363-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01363-2

Keywords

This article is cited by

Search

Quick links