Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2023 OSAKA
  • Published:

P-wave peak time and P-wave dispersion in surface electrocardiography as initial predictors of new-onset atrial fibrillation in early-onset hypertension

Abstract

Atrial fibrillation (AF) is common in hypertension, and electrophysiological remodelling may contribute to the early stage of the disease. This study aimed to develop electrocardiography (ECG) prediction models on new-onset AF (NAF) in early-onset hypertension (e-HTN). This matched case-control study included primary hypertension patients with onset <5 years defined as e-HTN and without documented AF. Developed NAF was the risk group and non-developed NAF was control group with 1:2 ratio. Group was matched according to age, gender, follow-up time, and duration of hypertension. Parameters of ECG and echocardiography between the groups at the baseline and end of follow-up will be compared. A total of 348 e-HTN with 116 developed NAF during follow-up (60.2 ± 14.5 months) were included. At baseline ECG, duration of QRS (100.84 ms ± 15.69 ms vs 94.80 ms ± 15.68 ms), Pmax (106.75 ms ± 7.93 ms vs 101.77 ms ± 6.78 ms), Pmin (70.24 ms ± 5.59 ms vs 68.17 ms ± 5.61 ms), P-wave dispersion (PD) (36.50 ms ± 5.25 ms vs 33.60 ms ± 5.46 ms), P-wave Peak Time (PWPT) II (62.01 ms ± 3.92 ms vs 54.29 ms ± 6.73 ms), and PWPT V1 (55.31 ms ± 2.89 ms vs 51.24 ms ± 4.05 ms) were significantly higher in developed NAF (all P-value < 0.05). LVMI was also significantly higher in bivariate analysis, but only Pmax, Pmin, PD, PWPT, non-RAAS inhibitor, and uncontrolled hypertension were independently associated with developed NAF. Baseline PWPT II with cut-off ≥57.9 ms and PD ≥ 35.5 ms has high sensitivity and specificity on NAF prediction. In conclusion, baseline PWPT and PD are potential electrophysiological parameters for predicting NAF in e-HTN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Karamitanha F, Ahmadi F, Fallahabadi H. Difference Between Various Countries in Mortality and Incidence Rate of the Atrial Fibrillation Based on Human Development Index in Worldwide: Data From Global Burden of Disease 2010–2019. Curr Probl Cardiol. 2023;48:1–17.

    Article  Google Scholar 

  2. Jones NR, Taylor CJ, Hobbs FDR, Bowman L, Casadei B. Screening for atrial fibrillation: A call for evidence. Eur Heart J. 2020;41:1075–85.

    Article  PubMed  Google Scholar 

  3. Khurshid S, Healey JS, McIntyre WF, Lubitz SA. Population-Based Screening for Atrial Fibrillation. Circ Res. 2020;127:143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eckstein J, Conen D, Kühne M. Atrial fibrillation: A moving target. Swiss Med Wkly. 2014;144:1–11.

    Google Scholar 

  5. Verdecchia P, Angeli F, Reboldi G. Hypertension and atrial fibrillation: Doubts and certainties from basic and clinical studies. Circ Res. 2018;122:352–68.

    Article  CAS  PubMed  Google Scholar 

  6. Verdecchia P, Staessen JA, Angeli F, de Simone G, Achilli A, Ganau A, et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet. 2009;374:525–33.

    Article  PubMed  Google Scholar 

  7. Verdecchia P, Dagenais G, Healey J, Gao P, Dans AL, Chazova I, et al. Blood pressure and other determinants of new-onset atrial fibrillation in patients at high cardiovascular risk in the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized AssessmeNt Study in ACE iNtolerant subjects with cardiovascular Disease studies. J Hypertens. 2012;30:1004–14.

    Article  CAS  PubMed  Google Scholar 

  8. Kawakami H, Ramkumar S, Nolan M, Wright L, Yang H, Negishi K, et al. Left Atrial Mechanical Dispersion Assessed by Strain Echocardiography as an Independent Predictor of New-Onset Atrial Fibrillation: A Case-Control Study. J Am Soc Echocardiogr. 2019;32:1268–76.e3.

    Article  PubMed  Google Scholar 

  9. Rosenberg MA, Gottdiener JS, Heckbert SR, Mukamal KJ. Echocardiographic diastolic parameters and risk of atrial fibrillation: The cardiovascular health study. Eur Heart J. 2012;33:904–12.

    Article  PubMed  Google Scholar 

  10. Potter A, Pearce K, Hilmy N. The benefits of echocardiography in primary care. Br J Gen Pract. 2019;69:358–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kabutoya T, Kario K. P-wave changes as an index of hypertensive organ damage and a predictor of cardiovascular events: can the P wave be used to assess atrial reverse remodeling? Hypertens Res. 2022;45:1400–3.

    Article  PubMed  Google Scholar 

  12. Kabutoya T, Hoshide S, Kario K. Notched P-Wave on Digital Electrocardiogram Predicts Cardiovascular Events in Patients with Cardiovascular Risks: The Japan Morning Surge Home Blood Pressure Study. Cardiology. 2022;147:307–14.

    Article  CAS  PubMed  Google Scholar 

  13. Duyuler TP, Duyuler S, Demirtas B, Cicekcioglu H, Cayhan V. P wave peak time and P wave dispersion in severe COVID-19 infection. Eur Rev Med Pharmacol Sci. 2022;26:4456–62.

    PubMed  Google Scholar 

  14. Keleşoğlu Ş. Assessment of P Wave Peak Time and P Wave Dispersion in Patients with COVID-19 Infection. Erciyes Med J. 2022;44:375–81.

    Google Scholar 

  15. Tachmatzidis D, Filos D, Chouvarda I, Tsarouchas A, Mouselimis D, Bakogiannis C, et al. Beat-to-beat p-wave analysis outperforms conventional p-wave indices in identifying patients with a history of paroxysmal atrial fibrillation during sinus rhythm. Diagnostics 2021;11:1–17.

    Article  Google Scholar 

  16. Dogan U, Apaydin Dogan E, Tekinalp M, Serhat Tokgoz O, Aribas A, Akilli H, et al. P-wave Dispersion for Predicting Paroxysmal Atrial Fibrillation in Acute Ischemic Stroke. Int J Med Sci. 2012. http://www.medsci.org108.

  17. Yıldırım E, Günay N, Bayam E, Keskin M, Ozturkeri B, Selcuk M. Relationship between paroxysmal atrial fibrillation and a novel electrocardiographic parameter P wave peak time. J Electrocardiol. 2019;57:81–6.

    Article  PubMed  Google Scholar 

  18. Boyraz B, İbişoğlu E. Effects of COVID-19 Infection on P-Wave Dispersion, P-Wave Peak Time and Atrial Conduction Times. e-J Cardiovasc Med. 2021;9:143–9.

    Article  Google Scholar 

  19. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57.

    Article  CAS  PubMed  Google Scholar 

  20. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15:155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burak C, Çağdaş M, Rencüzoğulları I, Karabağ Y, Artaç I, Yesin M, et al. Association of P wave peak time with left ventricular end-diastolic pressure in patients with hypertension. J Clin Hypertens. 2019;21:608–15.

    Article  Google Scholar 

  22. Çağdaş M, Karakoyun S, Rencüzoğulları İ, Karabağ Y, Yesin M, Gürsoy MO, et al. P wave peak time; a novel electrocardiographic parameter in the assessment of coronary no-reflow. J Electrocardiol. 2017;50:584–90.

    Article  PubMed  Google Scholar 

  23. Rosenberg MA, Manning WJ. Diastolic dysfunction and risk of atrial fibrillation: a mechanistic appraisal. Circulation 2012;126:2353–62.

    Article  PubMed  Google Scholar 

  24. Jarasunas J, Aidietis A, Aidietiene S. Left atrial strain - An early marker of left ventricular diastolic dysfunction in patients with hypertension and paroxysmal atrial fibrillation. Cardiovasc Ultrasound. 2018;16:1–9.

    Article  Google Scholar 

  25. Tsang TSM, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left Atrial Volume as a Morphophysiologic Expression of Left Ventricular Diastolic Dysfunction and Relation to Cardiovascular Risk Burden. Am J Cardiol. 2002;90:1284–9.

    Article  PubMed  Google Scholar 

  26. Ikejder Y, Sebbani M, Hendy I, Khramz M, Khatouri A, Bendriss L. Impact of Arterial Hypertension on Left Atrial Size and Function. Biomed Res Int. 2020;2020:1–7.

    Article  Google Scholar 

  27. Verdecchia P, Reboldi GP, Gattobigio R, Bentivoglio M, Borgioni C, Angeli F, et al. Atrial fibrillation in hypertension: Predictors and outcome. Hypertension 2003;41:218–23.

    Article  CAS  PubMed  Google Scholar 

  28. Goda T, Sugiyama Y, Ohara N, Ikegami T, Watanabe K, Kobayashi J, et al. P-Wave Terminal Force in Lead V1 Predicts Paroxysmal Atrial Fibrillation in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis. 2017;26:1912–5.

    Article  PubMed  Google Scholar 

  29. Baturova MA, Sheldon SH, Carlson J, Brady PA, Lin G, Rabinstein AA, et al. Electrocardiographic and Echocardiographic predictors of paroxysmal atrial fibrillation detected after ischemic stroke. BMC Cardiovasc Disord. 2016;16:1–8.

    Article  Google Scholar 

  30. Platonov PG. Atrial conduction and atrial fibrillation: What can we learn from surface ECG? Rev Artic Cardiol J. 2008;15:402–7. www.cardiologyjournal.org.

  31. Jurkko R, Väänänen H, Mäntynen V, Kuusisto J, Mäkijärvi M, Toivonen L. High-Resolution Signal-Averaged Analysis of Atrial Electromagnetic Characteristics in Patients with Paroxysmal Lone Atrial Fibrillation. Ann Noninvasive Electrocardiol. 2008;13:378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nemirovsky D, Hutter R, Anthony, Gomes J, the F, Weiner MA. The Electrical Substrate of Vagal Atrial Fibrillation as Assessed by the Signal-Averaged Electrocardiogram of the P Wave. PACE. 2008;31:308–13.

    Article  PubMed  Google Scholar 

  33. Lee DH, Lee KM, Yoon JM, Lim JW, Kho KO, Kil HR, et al. P wave dispersion on 12-lead electrocardiography in adolescents with neurocardiogenic syncope. Korean J Pediatr. 2016;59:451–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Öz A, Cinar T, Güler CK, Efe SÇ, Emre U, Karabǎ T, et al. Novel electrocardiography parameter for paroxysmal atrial fibrillation in acute ischaemic stroke patients: P wave peak time. Postgrad Med J. 2020;96:584–8.

    Article  PubMed  Google Scholar 

  35. Okutucu S, Aytemir K, Oto A. P-wave dispersion: What we know till now? JRSM Cardiovasc Dis. 2016;5:1–9.

    Google Scholar 

  36. Dilaveris PE, Gialafos EJ, Sideris SK, Theopistou AM, Andrikopoulos GK, Kyriakidis M, et al. Simple electrocardiography markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J. 1998;135:734–8.

    Article  Google Scholar 

  37. Cortez D, Baturova M, Lindgren A, Carlson J, Shubik YV, Olsson B, et al. Atrial time and voltage dispersion are both needed to predict new-onset atrial fibrillation in ischemic stroke patients. BMC Cardiovasc Disord. 2017;17:1–8.

    Article  Google Scholar 

  38. Patrick DM, Van Beusecum JP, Kirabo A. The role of inflammation in hypertension: novel concepts. Curr Opin Physiol. 2021;19:92–8.

    Article  CAS  PubMed  Google Scholar 

  39. Goette A, Lendeckel U. Electrophysiological effects of angiotensin II. Part I: Signal transduction and basic electrophysiological mechanisms. Europace 2008;10:238–41.

    Article  PubMed  Google Scholar 

  40. De Mello WC. Intracellular Angiotensin II Regulates the Inward Calcium Current in Cardiac Myocytes. Hypertension. 1998;32:976–82. http://www.hypertensionaha.org.

    Article  PubMed  Google Scholar 

  41. Ferron L, Capuano V, Ruchon Y, Deroubaix E, Coulombe A, Renaud JF. Angiotensin II Signaling Pathways Mediate Expression of Cardiac T-Type Calcium Channels. Circ Res. 2003;93:1241–8.

    Article  CAS  PubMed  Google Scholar 

  42. Daleau P, Turgeon J. Angiotensin II modulates the delayed rectifier potassium current of guinea pig ventricular myocytes. Eur J Physiol. 1994;427:553–5.

    Article  CAS  Google Scholar 

  43. Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 2003;41:2197–204.

    Article  CAS  PubMed  Google Scholar 

  44. Chaugai S, Meng WY, Sepehry AA. Effects of RAAS blockers on atrial fibrillation prophylaxis: An updated systematic review and meta-analysis of randomized controlled trials. J Cardiovasc Pharm Ther. 2016;21:388–404.

    Article  CAS  Google Scholar 

  45. Thomas MC, Dublin S, Kaplan RC, Glazer NL, Lumley T, Longstreth WT, et al. Blood pressure control and risk of incident atrial fibrillation. Am J Hypertens. 2008;21:1111–6.

    Article  CAS  PubMed  Google Scholar 

  46. Conen D, Tedrow UB, Koplan BA, Glynn RJ, Buring JE, Albert CM. Influence of systolic and diastolic blood pressure on the risk of incident atrial ribrillation in women. Circulation. 2009;119:2146–52.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wuopio J, Orho-Melander M, Ärnlöv J, Nowak C. Estimated salt intake and risk of atrial fibrillation in a prospective community-based cohort. J Intern Med. 2021;289:700–8.

    Article  CAS  PubMed  Google Scholar 

  48. Jin MN, Yang PS, Song C, Yu HT, Kim TH, Uhm JS, et al. Physical Activity and Risk of Atrial Fibrillation: A Nationwide Cohort Study in General Population. Sci Rep. 2019;9:1–9.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge I Made Junior Rina Artha, MD, PhD, FIHA, FAsCC, FAPSIC, FSCAI, FESC as our Head Department of Cardiology and Vascular Medicine, Prof. Dr. I.G.N.G Ngoerah General Hospital, Denpasar, Bali, Indonesia who gives us opportunity and general support to do this research.

Funding

Funding

All of financial on this manuscript was funded by author and co-author itself.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gusti Ngurah Prana Jagannatha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannatha, G.N.P., Antara, I.M.P.S., Kosasih, A.M. et al. P-wave peak time and P-wave dispersion in surface electrocardiography as initial predictors of new-onset atrial fibrillation in early-onset hypertension. Hypertens Res 47, 137–148 (2024). https://doi.org/10.1038/s41440-023-01357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01357-0

Keywords

This article is cited by

Search

Quick links