Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular function: a key player in hypertension

Abstract

The major functions of the arterial system are to “efficiently deliver blood to the peripheral organs and maintain vascular homeostasis”. Both the endothelial and medial layer contribute to the three major functions, namely, conversion of pulsatile to steady blood flow, appropriate distribution of blood flow to the target organs, and vascular protection and homeostasis. Vascular dysfunction contributes to the development of cardiovascular diseases through a combination of several mechanisms, including impaired coronary perfusion, cardiac systolic/diastolic dysfunction, microvascular damage, and abnormal hemodynamics in the arterial tree. The representative marker of endothelial function is flow-mediated vasodilatation and that of the medial layer function is pulse wave velocity, and that of the blood supply function of the arterial tree is the ankle-brachial pressure index. In hypertension, vascular dysfunction could also lead to the development of isolated systolic hypertension, isolated diastolic hypertension, and systolic/diastolic hypertension. Vascular dysfunction is involved in a vicious cycle with abnormal blood pressure variability. Furthermore, a vicious cycle may also exist between vascular dysfunction and hypertension. While the significances of vascular function tests to predict future cardiovascular events has been established in cases of hypertension, their usefulness in assessing the effectiveness of management of the vascular functions in hypertension on the cardiovascular outcomes has not yet been fully clarified. Thus, vascular dysfunction plays crucial roles in the pathophysiology of hypertension, and further research is warranted to establish strategies to improve vascular dysfunction in cases of hypertension.

Vascular functions in the pathophysiology of hypertension. Vascular dysfunction and elevation of blood pressure are components of a vicious cycle even from their early stages, which including abnormal blood pressure variabilities. This vicious cycle is associated with hypertensive organ damage and also adverse cardiovascular outcomes. Strategies to break this vicious cycle have not yet been fully established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ikeda N, Inoue M, Iso H, Ikeda S, Satoh T, Noda M, et al. Adult mortality attributable to preventable risk factors for non-communicable diseases and injuries in Japan: a comparative risk assessment. PLoS Med. 2012;9:e1001160. https://doi.org/10.1371/journal.pmed.1001160.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  PubMed  Google Scholar 

  3. Tomiyama H, Yamashina A. Non-invasive vascular function tests: their pathophysiological background and clinical application. Circ J. 2010;74:24–33.

    Article  PubMed  Google Scholar 

  4. Maruhashi T, Higashi Y. Current topic of vascular function in hypertension. Hypertens Res. 2023;46:630–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tanaka A, Tomiyama H, Maruhashi T, Matsuzawa Y, Miyoshi T, Kabutoya T, et al. Physiological Diagnosis Criteria for Vascular Failure Committee. Physiological diagnostic criteria for vascular failure. Hypertension. 2018;72:1060–71.

    Article  CAS  PubMed  Google Scholar 

  6. Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74:1237–63.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tomiyama H, Shiina K. State of the art review: brachial-ankle PWV. J Atheroscler Thromb. 2020;27:621–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kushiro T, Doba N, Tomiyama H, Ishii T, Hinohara S, Kajiwara N. Prediction of the progression of cardiac hypertrophy in middle-aged mild hypertensives. J Hypertens Suppl. 1988;6:S91–3.

    Article  CAS  PubMed  Google Scholar 

  9. Tomiyama H, Kihara Y, Nishikawa E, Watanabe G, Nakayama T, Sakamoto N, et al. An impaired carotid sinus distensibility and baroreceptor sensitivity alter autonomic activity in patients with effort angina associated with significant coronary artery disease. Am J Cardiol. 1996;78:225–7.

    Article  CAS  PubMed  Google Scholar 

  10. Tomiyama H, Kimura Y, Mitsuhashi H, Kinouchi T, Yoshida H, Kushiro T, et al. Relationship between endothelial function and fibrinolysis in early hypertension. Hypertension. 1998;31:321–7.

    Article  CAS  PubMed  Google Scholar 

  11. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:753–67.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Green DJ, Jones H, Thijssen D, Cable NT, Atkinson G. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension. 2011;57:363–9.

    Article  CAS  PubMed  Google Scholar 

  13. Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35:1039–47.

    Article  CAS  PubMed  Google Scholar 

  14. Boutouyrie P, Chowienczyk P, Humphrey JD, Mitchell GF. Arterial stiffness and cardiovascular risk in hypertension. Circ Res. 2021;128:864–86.

    Article  CAS  PubMed  Google Scholar 

  15. Peppa M, Pavlidis G, Mavroeidi I, Katogiannis K, Varoudi M, Thymis J, et al. Effects of hormone replacement therapy on endothelial function, arterial stiffness and myocardial deformation in women with Turner syndrome. J Hypertens. 2021;39:2051–7.

    Article  CAS  PubMed  Google Scholar 

  16. Tomiyama H, Ishizu T, Kohro T, Matsumoto C, Higashi Y, Takase B, et al. Longitudinal association among endothelial function, arterial stiffness and subclinical organ damage in hypertension. Int J Cardiol. 2018;253:161–6.

    Article  PubMed  Google Scholar 

  17. Söderström T, Stefanovska A, Veber M, Svensson H. Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am J Physiol Heart Circ Physiol. 2003;284:H1638–46.

    Article  PubMed  Google Scholar 

  18. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101:1487–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Webb AJS, Werring DJ. New insights into cerebrovascular pathophysiology and hypertension. Stroke 2022;53:1054–64.

    Article  CAS  PubMed  Google Scholar 

  20. DiNatale JC, Crowe-White KM. Effects of resveratrol supplementation on nitric oxide-mediated vascular outcomes in hypertension: a systematic review. Nitric Oxide. 2022;129:74–81.

    Article  CAS  PubMed  Google Scholar 

  21. Clark CE, Warren FC, Boddy K, McDonagh STJ, Moore SF, Goddard J, et al. Associations between systolic interarm differences in blood pressure and cardiovascular disease outcomes and mortality: individual participant data meta-analysis, development and validation of a prognostic algorithm: the INTERPRESS-IPD Collaboration. Hypertension. 2021;77:650–61.

    Article  CAS  PubMed  Google Scholar 

  22. Tomiyama H, Ohkuma T, Ninomiya T, Mastumoto C, Kario K, Hoshide S, et al. Collaborative group for J-BAVEL-IAD (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies to Examine the Significance of Inter-Arm Blood Pressure Difference). Simultaneously measured interarm blood pressure difference and stroke: an individual participants data meta-analysis. Hypertension. 2018;71:1030–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ankle Brachial Index Collaboration, Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, Chambless LE, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197–208.

    Article  PubMed Central  Google Scholar 

  24. Takahashi T, Tomiyama H, Aboyans V, Kumai K, Nakano H, Fujii M, et al. Association of pulse wave velocity and pressure wave reflection with the ankle-brachial pressure index in Japanese men not suffering from peripheral artery disease. Atherosclerosis. 2021;317:29–35.

    Article  CAS  PubMed  Google Scholar 

  25. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Collaborative group for the Japan Brachial-Ankle pulse wave VELocity individual participant data meta-analysis of prospective studies to examine the significance of the Ankle-Brachial Index (J-BAVEL-ABI). Ankle-brachial index measured by oscillometry is predictive for cardiovascular disease and premature death in the Japanese population: an individual participant data meta-analysis. Atherosclerosis. 2018;275:141–8.

    Article  CAS  PubMed  Google Scholar 

  26. Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, et al. Endothelial function predicts progression of carotid intima-media thickness. Circulation. 2009;119:1005–12.

    Article  PubMed  Google Scholar 

  27. Safar ME, Nilsson PM, Blacher J, Mimran A. Pulse pressure, arterial stiffness, and end-organ damage. Curr Hypertens Rep. 2012;14:339–44.

    Article  PubMed  Google Scholar 

  28. Yin W, Shanmugavelayudam SK, Rubenstein DA. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thromb Res. 2011;127:235–41.

    Article  CAS  PubMed  Google Scholar 

  29. Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal. 2015;22:1230–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res. 2021;117:2525–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kingwell BA, Waddell TK, Medley TL, Cameron JD, Dart AM. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J Am Coll Cardiol. 2002;40:773–9.

    Article  PubMed  Google Scholar 

  32. Kelshiker MA, Seligman H, Howard JP, Rahman H, Foley M, Nowbar AN, et al. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J. 2022;43:1582–93.

    Article  PubMed  Google Scholar 

  33. Pellegrino T, Storto G, Filardi PP, Sorrentino AR, Silvestro A, Petretta M, et al. Relationship between brachial artery flow-mediated dilation and coronary flow reserve in patients with peripheral artery disease. J Nucl Med. 2005;46:1997–2002.

    PubMed  Google Scholar 

  34. Fukuda D, Yoshiyama M, Shimada K, Yamashita H, Ehara S, Nakamura Y, et al. Relation between aortic stiffness and coronary flow reserve in patients with coronary artery disease. Heart. 2006;92:759–62.

    Article  CAS  PubMed  Google Scholar 

  35. Parrinello R, Sestito A, Di Franco A, Russo G, Villano A, Figliozzi S, et al. Peripheral arterial function and coronary microvascular function in patients with variant angina. Cardiology. 2014;129:20–4.

    Article  PubMed  Google Scholar 

  36. Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78:1352–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Takei Y, Tomiyama H, Higashi Y, Yamashina A, Chikamori T. Association between endothelial dysfunction and left ventricular diastolic stiffness- subanalysis of the Flow-mediated Dilation Japan (FMD-J) Study. Circ J. 2023. https://doi.org/10.1253/circj.CJ-22-0810.

  38. Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015;17:884–92.

    Article  PubMed  Google Scholar 

  39. Kobayashi S, Yano M, Kohno M, Obayashi M, Hisamatsu Y, Ryoke T, et al. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation. 1996;94:3362–8.

    Article  CAS  PubMed  Google Scholar 

  40. Hashimoto J, Watabe D, Hatanaka R, Hanasawa T, Metoki H, Asayama K, et al. Enhanced radial late systolic pressure augmentation in hypertensive patients with left ventricular hypertrophy. Am J Hypertens. 2006;19:27–32.

    Article  PubMed  Google Scholar 

  41. Scuteri A, Morrell CH, Fegatelli DA, Fiorillo E, Delitala A, Orru’ M, et al. Arterial stiffness and multiple organ damage: a longitudinal study in population. Aging Clin Exp Res. 2020;32:781–8.

    Article  PubMed  Google Scholar 

  42. Yeboah J, Crouse JR, Bluemke DA, Lima JA, Polak JF, Burke GL, et al. Endothelial dysfunction is associated with left ventricular mass (assessed using MRI) in an adult population (MESA). J Hum Hypertens. 2011;25:25–31.

    Article  CAS  PubMed  Google Scholar 

  43. Hasegawa T, Boden-Albala B, Eguchi K, Jin Z, Sacco RL, Homma S, et al. Impaired flow-mediated vasodilatation is associated with increased left ventricular mass in a multiethnic population. The Northern Manhattan Study. Am J Hypertens. 2010;23:413–9.

    Article  PubMed  Google Scholar 

  44. Chirinos JA, Sweitzer N. Ventricular-arterial coupling in chronic heart failure. Card Fail Rev. 2017;3:12–18.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail. 2019;21:402–24.

    Article  PubMed  Google Scholar 

  46. Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy. Curr Hypertens Rep. 2020;22:11. https://doi.org/10.1007/s11906-020-1017-9.

    Article  PubMed  Google Scholar 

  47. Yambe M, Tomiyama H, Hirayama Y, Gulniza Z, Takata Y, Koji Y, et al. Arterial stiffening as a possible risk factor for both atherosclerosis and diastolic heart failure. Hypertens Res. 2004;27:625–31.

    Article  PubMed  Google Scholar 

  48. Shaikh AY, Wang N, Yin X, Larson MG, Vasan RS, Hamburg NM, et al. Relations of arterial stiffness and brachial flow-mediated dilation with new-onset atrial fibrillation: the Framingham Heart Study. Hypertension. 2016;68:590–6.

    Article  CAS  PubMed  Google Scholar 

  49. Yang J, Liu Z. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy. Front Endocrinol. 2022;13:816400. https://doi.org/10.3389/fendo.2022.816400.

    Article  Google Scholar 

  50. Bolaños JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta. 1999;1411:415–36.

    Article  PubMed  Google Scholar 

  51. Jefferson AL, Cambronero FE, Liu D, Moore EE, Neal JE, Terry JG, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation. 2018;138:1951–62.

    Article  PubMed  PubMed Central  Google Scholar 

  52. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    Article  PubMed  Google Scholar 

  53. Tomiyama H, Tanaka H, Hashimoto H, Matsumoto C, Odaira M, Yamada J, et al. Arterial stiffness and declines in individuals with normal renal function/early chronic kidney disease. Atherosclerosis. 2010;212:345–50.

    Article  CAS  PubMed  Google Scholar 

  54. Yukutake T, Yamada M, Fukutani N, Nishiguchi S, Kayama H, Tanigawa T, et al. Arterial stiffness predicts cognitive decline in Japanese community-dwelling elderly subjects: a one-year follow-up study. J Atheroscler Thromb. 2015;22:637–44.

    Article  PubMed  Google Scholar 

  55. Laurent S, Agabiti-Rosei C, Bruno RM, Rizzoni D. Microcirculation and macrocirculation in hypertension: a dangerous cross-link? Hypertension. 2022;79:479–90.

    Article  CAS  PubMed  Google Scholar 

  56. Nemoto T, Minami Y, Yamaoka-Tojo M, Sato T, Muramatsu Y, Kakizaki R, et al. Impaired flow-mediated dilation and severity and vulnerability of culprit plaque in patients with coronary artery disease. Int Heart J. 2019;60:539–45.

    Article  CAS  PubMed  Google Scholar 

  57. Matsuzawa Y, Li J, Aoki T, Guddeti RR, Kwon TG, Cilluffo R, et al. Predictive value of endothelial function by noninvasive peripheral arterial tonometry for coronary artery disease. Coron Artery Dis. 2015;26:231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yamashina A, Tomiyama H, Arai T, Hirose K, Koji Y, Hirayama Y, et al. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens Res. 2003;26:615–22.

    Article  PubMed  Google Scholar 

  59. Miyoshi T, Doi M, Hirohata S, Sakane K, Kamikawa S, Kitawaki T, et al. Cardio-ankle vascular index is independently associated with the severity of coronary atherosclerosis and left ventricular function in patients with ischemic heart disease. J Atheroscler Thromb. 2010;17:249–58.

    Article  PubMed  Google Scholar 

  60. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.

    Article  PubMed  Google Scholar 

  61. Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol. 2013;168:344–51.

    Article  PubMed  Google Scholar 

  62. Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a systematic review and meta-analysis. J Am Heart Assoc. 2015;4:e002270 https://doi.org/10.1161/JAHA.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Collaborative Group for J-BAVEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies). Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69:1045–52.

    Article  CAS  PubMed  Google Scholar 

  64. Matsushita K, Ding N, Kim ED, Budoff M, Chirinos JA, Fernhall B, et al. Cardio-ankle vascular index and cardiovascular disease: systematic review and meta-analysis of prospective and cross-sectional studies. J Clin Hypertens. 2019;21:16–24.

    Article  CAS  Google Scholar 

  65. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  66. Tomiyama H, Kohro T, Higashi Y, Takase B, Suzuki T, Ishizu T, et al. Reliability of measurement of endothelial function across multiple institutions and establishment of reference values in Japanese. Atherosclerosis. 2015;242:433–42.

    Article  CAS  PubMed  Google Scholar 

  67. Clifford PS, Hellsten Y. Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol (1985). 2004;97:393–403.

    Article  PubMed  Google Scholar 

  68. Tagawa T, Imaizumi T, Endo T, Shiramoto M, Harasawa Y, Takeshita A. Role of nitric oxide in reactive hyperemia in human forearm vessels. Circulation. 1994;90:2285–90.

    Article  CAS  PubMed  Google Scholar 

  69. Tomiyama H, Yoshida M, Higashi Y, Takase B, Furumoto T, Kario K, et al. sub-group study of FMD-J. Autonomic nervous activation triggered during induction of reactive hyperemia exerts a greater influence on the measured reactive hyperemia index by peripheral arterial tonometry than on flow-mediated vasodilatation of the brachial artery in patients with hypertension. Hypertens Res. 2014;37:914–8.

    Article  PubMed  Google Scholar 

  70. Järvisalo MJ, Jartti L, Toikka JO, Hartiala JJ, Rönnemaa T, Raitakari OT. Noninvasive assessment of brachial artery endothelial function with digital ultrasound and 13-MHz scanning frequency: feasibility of measuring the true inner luminal diameter using the intima-lumen interface. Ultrasound Med Biol. 2000;26:1257–60.

    Article  PubMed  Google Scholar 

  71. Motobe K, Tomiyama H, Koji Y, Yambe M, Gulinisa Z, Arai T, et al. Cut-off value of the ankle-brachial pressure index at which the accuracy of brachial-ankle pulse wave velocity measurement is diminished. Circ J. 2005;69:55–60.

    Article  PubMed  Google Scholar 

  72. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res. 2002;25:359–64.

    Article  PubMed  Google Scholar 

  73. Saiki A, Ohira M, Yamaguchi T, Nagayama D, Shimizu N, Shirai K, et al. New horizons of arterial stiffness developed using Cardio-Ankle Vascular Index (CAVI). J Atheroscler Thromb. 2020;27:732–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kato A, Takita T, Furuhashi M, Maruyama Y, Miyajima H, Kumagai H. Brachial-ankle pulse wave velocity and the cardio-ankle vascular index as a predictor of cardiovascular outcomes in patients on regular hemodialysis. Ther Apher Dial. 2012;16:232–41.

    Article  CAS  PubMed  Google Scholar 

  75. Tabara Y, Setoh K, Kawaguchi T, Nakayama T, Matsuda F, Nagahama study group. Brachial-ankle pulse wave velocity and cardio-ankle vascular index are associated with future cardiovascular events in a general population: The Nagahama Study. J Clin Hypertens. 2021;23:1390–8.

    Article  Google Scholar 

  76. Tomiyama H, Ohkuma T, Ninomiya T, Nakano H, Matsumoto C, Avolio A, et al. Brachial-ankle pulse wave velocity versus its stiffness index β-transformed value as risk marker for cardiovascular disease. J Am Heart Assoc. 2019;8:e013004 https://doi.org/10.1161/JAHA.119.013004.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Increased arterial stiffness and cardiovascular risk prediction in controlled hypertensive patients with coronary artery disease: post hoc analysis of FMD-J (Flow-mediated Dilation Japan) Study A. Hypertens Res. 2020;43:781–90.

    Article  PubMed  Google Scholar 

  78. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. American Heart Association Council on Peripheral Vascular Disease; Council on Epidemiology and Prevention; Council on Clinical Cardiology; Council on Cardiovascular Nursing; Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126:2890–909.

    Article  PubMed  Google Scholar 

  79. Koji Y, Tomiyama H, Ichihashi H, Nagae T, Tanaka N, Takazawa K, et al. Comparison of ankle-brachial pressure index and pulse wave velocity as markers of the presence of coronary artery disease in subjects with a high risk of atherosclerotic cardiovascular disease. Am J Cardiol. 2004;94:868–72.

    Article  PubMed  Google Scholar 

  80. Tanaka S, Kaneko H, Kano H, Matsuno S, Suzuki S, Takai H, et al. The predictive value of the borderline ankle-brachial index for long-term clinical outcomes: an observational cohort study. Atherosclerosis. 2016;250:69–76.

    Article  CAS  PubMed  Google Scholar 

  81. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–5.

    Article  CAS  PubMed  Google Scholar 

  82. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.

    Article  PubMed  Google Scholar 

  83. Waller A. Note of observations on the rate of propagation of the arterial pulse-wave. J Physiol. 1880;3:37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Peters SA, den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart. 2012;98:177–84.

    Article  PubMed  Google Scholar 

  85. Ohkuma T, Tomiyama H, Ninomiya T, Kario K, Hoshide S, Kita Y, et al. Collaborative Group for Japan Brachial-Ankle pulse wave VELocity individual participant data meta-analysis of prospective studies (J-BAVEL). Proposed cutoff value of brachial-ankle pulse wave velocity for the management of hypertension. Circ J. 2017;81:1540–2.

    Article  PubMed  Google Scholar 

  86. Tomiyama H, Ohkuma T, Ninomiya T, Mastumoto C, Kario K, Hoshide S, et al. Collaborative Group for J-BAVELs (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies). Steno-stiffness approach for cardiovascular disease risk assessment in primary prevention. Hypertension. 2019;73:508–13.

    Article  CAS  PubMed  Google Scholar 

  87. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Endothelial dysfunction, increased arterial stiffness, and cardiovascular risk prediction in patients with coronary artery disease: FMD-J (Flow-Mediated Dilation Japan) Study A. J Am Heart Assoc. 2018;7:e008588. https://doi.org/10.1161/JAHA.118.008588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oda N, Kajikawa M, Maruhashi T, Iwamoto Y, Kishimoto S, Matsui S, et al. Endothelial function is impaired in relation to alcohol intake even in the case of light alcohol consumption in Asian men; Flow-mediated Dilation Japan (FMD-J) Study. Int J Cardiol. 2017;230:523–8.

    Article  PubMed  Google Scholar 

  89. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Endothelial function is impaired in patients receiving antihypertensive drug treatment regardless of blood pressure level: FMD-J Study (Flow-Mediated Dilation Japan). Hypertension. 2017;70:790–7.

    Article  CAS  PubMed  Google Scholar 

  90. Tomiyama H, Saisu T, Yamashina A. Measurement of flow-mediated vasodilatation. Int Heart J. 2017;58:158–62.

    Article  PubMed  Google Scholar 

  91. Abe S, Haruyama Y, Kobashi G, Toyoda S, Inoue T, Tomiyama H, et al. Effect of novel stratified lipid risk by “LDL-window” and flow-mediated dilation on the prognosis of coronary artery disease using the FMD-J study A data. Circ J. 2022;86:1444–54.

    Article  CAS  PubMed  Google Scholar 

  92. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Brachial artery diameter as a marker for cardiovascular risk assessment: FMD-J study. Atherosclerosis. 2018;268:92–98.

    Article  CAS  PubMed  Google Scholar 

  93. Kajikawa M, Maruhashi T, Kishimoto S, Matsui S, Hashimoto H, Takaeko Y, et al. Target of triglycerides as residual risk for cardiovascular events in patients with coronary artery disease - post hoc analysis of the FMD-J Study A. Circ J. 2019;83:1064–71.

    Article  CAS  PubMed  Google Scholar 

  94. Oda N, Kajikawa M, Maruhashi T, Kishimoto S, Yusoff FM, Goto C, et al. Endothelial function is preserved in light to moderate alcohol drinkers but is impaired in heavy drinkers in women: Flow-mediated Dilation Japan (FMD-J) study. PLoS ONE. 2020;15:e0243216. https://doi.org/10.1371/journal.pone.0243216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tokushige A, Ueda S, Tomiyama H, Ohishi M, Kohro T, Higashi Y, et al. Association between waist-to-height ratio and endothelial dysfunction in patients with morbidity - a report from the FMD-J study. Circ J. 2017;81:1911–8.

    Article  CAS  PubMed  Google Scholar 

  96. Safar H, Chahwakilian A, Boudali Y, Debray-Meignan S, Safar M, Blacher J. Arterial stiffness, isolated systolic hypertension, and cardiovascular risk in the elderly. Am J Geriatr Cardiol. 2006;15:178–82.

    Article  PubMed  Google Scholar 

  97. Tomiyama H, Shiina K, Nakano H, Iwasaki Y, Matsumoto C, Fujii M, et al. Arterial stiffness and pressure wave reflection in the development of isolated diastolic hypertension. J Hypertens. 2020;38:2000–7.

    Article  CAS  PubMed  Google Scholar 

  98. Franklin SS, Pio JR, Wong ND, Larson MG, Leip EP, Vasan RS, et al. Predictors of new-onset diastolic and systolic hypertension: the Framingham Heart Study. Circulation. 2005;111:1121–7.

    Article  PubMed  Google Scholar 

  99. Takahashi T, Nakano H, Shiina K, Fujii M, Matsumoto C, Tomiyama H, et al. Abnormal central hemodynamics and the progression of increased arterial stiffness in submission. (in submission)

  100. Zhang Y, Bie L, Li M, Wang T, Xu M, Lu J, et al. Visit-to-visit blood pressure variability is associated with arterial stiffness in Chinese adults: A prospective analysis. J Clin Hypertens. 2021;23:802–12.

    Article  CAS  Google Scholar 

  101. Messerli FH, Rimoldi SF, Bangalore S. Blood pressure variability and arterial stiffness-chicken or egg? JAMA Cardiol. 2019;4:1050.

    Article  PubMed  Google Scholar 

  102. Miyauchi S, Nagai M, Dote K, Kato M, Oda N, Kunita E, et al. Visit-to-visit blood pressure variability and arterial stiffness: which came first: the chicken or the egg? Curr Pharm Des. 2019;25:685–92.

    Article  CAS  PubMed  Google Scholar 

  103. Tomiyama H, Matsumoto C, Kimura K, Odaira M, Shiina K, Yamashina A. Pathophysiological contribution of vascular function to baroreflex regulation in hypertension. Circ J. 2014;78:1414–9.

    Article  CAS  PubMed  Google Scholar 

  104. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;354:i4098 https://doi.org/10.1136/bmj.i4098.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Laurent S, Chatellier G, Azizi M, Calvet D, Choukroun G, Danchin N, et al. SPARTE Investigators. SPARTE Study: normalization of arterial stiffness and cardiovascular events in patients with hypertension at medium to very high risk. Hypertension. 2021;78:983–95.

    Article  CAS  PubMed  Google Scholar 

  106. Tomiyama H, Shiina K, Vlachopoulos C, Iwasaki Y, Matsumoto C, Kimura K, et al. Involvement of arterial stiffness and inflammation in hyperuricemia-related development of hypertension. Hypertension. 2018;72:739–45.

    Article  CAS  PubMed  Google Scholar 

  107. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tomiyama H, O’rourke MF, Hashimoto H, Matsumoto C, Odaira M, Yoshida M, et al. Central blood pressure: a powerful predictor of the development of hypertension. Hypertens Res. 2013;36:19–24.

    Article  PubMed  Google Scholar 

  109. Sugiura T, Takase H, Machii M, Nonaka D, Ohno K, Ohte N, et al. Central blood pressure predicts the development of hypertension in the general population. Hypertens Res. 2020;43:1301–8.

    Article  PubMed  Google Scholar 

  110. Shimbo D, Muntner P, Mann D, Viera AJ, Homma S, Polak JF, et al. Endothelial dysfunction and the risk of hypertension: the multi-ethnic study of atherosclerosis. Hypertension. 2010;55:1210–6.

    Article  CAS  PubMed  Google Scholar 

  111. Jurko T, Mestanik M, Mestanikova A, Zeleňák K, Jurko A. Early signs of microvascular endothelial dysfunction in adolescents with newly diagnosed essential hypertension. Life. 2022;12:1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nakano H, Shiina K, Takahashi T, Fujii M, Iwasaki Y, Matsumoto C, et al. Bidirectional longitudinal relationships between arterial stiffness and hypertension are independent of those between arterial stiffness and diabetes: a large-scale prospective observational study in employees of a Japanese Company. J Am Heart Assoc. 2022;11:e025924. https://doi.org/10.1161/JAHA.121.025924.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hahad O, Wild PS, Prochaska JH, Schulz A, Hermanns I, Lackner KJ, et al. Endothelial function assessed by digital volume plethysmography predicts the development and progression of type 2 diabetes mellitus. J Am Heart Assoc. 2019;8:e012509. https://doi.org/10.1161/JAHA.119.012509.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cohen JB, Mitchell GF, Gill D, Burgess S, Rahman M, Hanff TC, et al. Arterial stiffness and diabetes risk in framingham heart study and UK Biobank. Circ Res. 2022;131:545–54.

    Article  CAS  PubMed  Google Scholar 

  115. Chirinos JA. Large artery stiffness and new-onset diabetes. Circ Res. 2020;127:1499–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  117. Cheng Y, Sun Z, Ya X, Zhou L, Wang M, Wang X, et al. Effect of exercise training on arterial stiffness in obese and overweight children: a meta-analysis. Eur J Pediatr. 2022;181:2633–42.

    Article  PubMed  Google Scholar 

  118. Qiu S, Cai X, Yin H, Sun Z, Zügel M, Steinacker JM, et al. Exercise training and endothelial function in patients with type 2 diabetes: a meta-analysis. Cardiovasc Diabetol. 2018;17:64. https://doi.org/10.1186/s12933-018-0711-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dickinson KM, Keogh JB, Clifton PM. Effects of a low-salt diet on flow-mediated dilatation in humans. Am J Clin Nutr. 2009;89:485–90.

    Article  CAS  PubMed  Google Scholar 

  120. Avolio AP, Clyde KM, Beard TC, Cooke HM, Ho KK, O’Rourke MF. Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis. 1986;6:166–9.

    Article  CAS  PubMed  Google Scholar 

  121. Ne JYA, Cai TY, Celermajer DS, Caterson ID, Gill T, Lee CMY, et al. Obesity, arterial function and arterial structure – a systematic review and meta-analysis. Obes Sci Pract. 2017;3:171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fujii M, Tomiyama H, Nakano H, Iwasaki Y, Matsumoto C, Shiina K, et al. Differences in longitudinal associations of cardiovascular risk factors with arterial stiffness and pressure wave reflection in middle-aged Japanese men. Hypertens Res. 2021;44:98–106.

    Article  PubMed  Google Scholar 

  123. Mitchell GF, Guo CY, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. Circulation 2007;115:2628–36.

    Article  PubMed  Google Scholar 

  124. Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2015;35:243–52.

    Article  CAS  PubMed  Google Scholar 

  125. Joris PJ, Plat J, Kusters YH, Houben AJ, Stehouwer CD, Schalkwijk CG, et al. Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: a randomized controlled trial in abdominally obese men. Am J Clin Nutr. 2017;105:23–31.

    Article  CAS  PubMed  Google Scholar 

  126. Tomiyama H, Hashimoto H, Tanaka H, Matsumoto C, Odaira M, Yamada J, et al. Continuous smoking and progression of arterial stiffening: a prospective study. J Am Coll Cardiol. 2010;55:1979–87.

    Article  CAS  PubMed  Google Scholar 

  127. Johnson HM, Gossett LK, Piper ME, Aeschlimann SE, Korcarz CE, Baker TB, et al. Effects of smoking and smoking cessation on endothelial function: 1-year outcomes from a randomized clinical trial. J Am Coll Cardiol. 2010;55:1988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shiina K, Takahashi T, Nakano H, Fujii M, Iwasaki Y, Matsumoto C, et al. Longitudinal associations between alcohol intake and arterial stiffness, pressure wave reflection, and inflammation. J Atheroscler Thromb. 2023;30:192–202.

    Article  CAS  PubMed  Google Scholar 

  129. Xue C, Chen QZ, Bian L, Yin ZF, Xu ZJ, Zhang AL, et al. Effects of smoking cessation with nicotine replacement therapy on vascular endothelial function, arterial stiffness, and inflammation response in healthy smokers. Angiology. 2019;70:719–25.

    Article  CAS  PubMed  Google Scholar 

  130. Kitta Y, Obata JE, Nakamura T, Hirano M, Kodama Y, Fujioka D, et al. Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J Am Coll Cardiol. 2009;53:323–30.

    Article  PubMed  Google Scholar 

  131. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103:987–92.

    Article  CAS  PubMed  Google Scholar 

  132. Ding H, Liu S, Zhao KX, Pu J, Xie YF, Zhang XW. Comparative efficacy of antihypertensive agents in flow-mediated vasodilation of patients with hypertension: network meta-analysis of randomized controlled trial. Int J Hypertens. 2022;2022:2432567. https://doi.org/10.1155/2022/2432567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen X, Huang B, Liu M, Li X. Effects of different types of antihypertensive agents on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Thorac Dis. 2015;7:2339–47.

    PubMed  PubMed Central  Google Scholar 

  134. Sakima A, Arima H, Matayoshi T, Ishida A, Ohya Y. Effect of mineralocorticoid receptor blockade on arterial stiffness and endothelial function: a meta-analysis of randomized trials. Hypertension. 2021;77:929–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The FMDJ study was sponsored by the Japan Atherosclerosis Prevention Fund.

Funding

Omron Health Care Company (Kyoto, Japan), Asahi Calpis Wellness Company (Tokyo, Japan) and Teijin Pharma Company (Tokyo, Japan) awarded funds to Professor Hirofumi Tomiyama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Tomiyama.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiyama, H. Vascular function: a key player in hypertension. Hypertens Res 46, 2145–2158 (2023). https://doi.org/10.1038/s41440-023-01354-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01354-3

Keywords

This article is cited by

Search

Quick links