Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Digital Hypertension/Current evidence and perspectives for hypertension management in Asia
  • Published:

Machine learning-based protein signatures for differentiating hypertensive disorders of pregnancy

A Comment to this article was published on 11 October 2023

Abstract

Hypertensive disorders of pregnancy (HDP) result in major maternal and fetal complications. Our study aimed to find a panel of protein markers to identify HDP by applying machine-learning models. The study was conducted on a total of 133 samples, divided into four groups, healthy pregnancy (HP, n = 42), gestational hypertension (GH, n = 67), preeclampsia (PE, n = 9), and ante-partum eclampsia (APE, n = 15). Thirty circulatory protein markers were measured using Luminex multiplex immunoassay and ELISA. Significant markers were screened for potential predictive markers by both statistical and machine-learning approaches. Statistical analysis found seven markers such as sFlt-1, PlGF, endothelin-1(ET-1), basic-FGF, IL-4, eotaxin and RANTES to be altered significantly in disease groups compared to healthy pregnant. Support vector machine (SVM) learning model classified GH and HP with 11 markers (eotaxin, GM-CSF, IL-4, IL-6, IL-13, MCP-1, MIP-1α, MIP-1β, RANTES, ET-1, sFlt-1) and HDP with 13 markers (eotaxin, G-CSF, GM-CSF, IFN-gamma, IL-4, IL-5, IL-6, IL-13, MCP-1, MIP-1β, RANTES, ET-1, sFlt-1). While logistic regression (LR) model classified PE with 13 markers (basic FGF, IL-1β, IL-1ra, IL-7, IL-9, MIP-1β, RANTES, TNF-alpha, nitric oxide, superoxide dismutase, ET-1, PlGF, sFlt-1) and APE by 12 markers (eotaxin, basic-FGF, G-CSF, GM-CSF, IL-1β, IL-5, IL-8, IL-13, IL-17, PDGF-BB, RANTES, PlGF). These markers may be used to diagnose the progression of healthy pregnant to a hypertensive state. Future longitudinal studies with large number of samples are needed to validate these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mammaro A, Carrara S, Cavaliere A, Ermito S, Dinatale A, Pappalardo EM, et al. Hypertensive disorders of pregnancy. J Prenat Med. 2009;3:1–5.

    PubMed  PubMed Central  Google Scholar 

  2. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018;72:24–43. https://doi.org/10.1161/HYPERTENSIONAHA.117.10803.

    Article  CAS  PubMed  Google Scholar 

  3. McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of endothelial dysfunction in pre-eclampsia and gestational diabetes mellitus: windows into future cardiometabolic health? Front Endocrinol. 2020;11:655.

    Article  Google Scholar 

  4. Sibai BM. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol. 2003;102:181–92. https://doi.org/10.1016/s0029-7844(03)00475-7.

    Article  PubMed  Google Scholar 

  5. Kyozuka H, Fujimori K, Hosoya M, Yasumura S, Yokoyama T, Sato A, et al. The Japan Environment and Children’s Study (JECS) in Fukushima Prefecture: pregnancy outcome after the Great East Japan Earthquake. Tohoku J Exp Med. 2018;246:27–33. https://doi.org/10.1620/tjem.246.27.

    Article  PubMed  Google Scholar 

  6. ACOG. ACOG practice bulletin no. 202: gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133:1. https://doi.org/10.1097/AOG.0000000000003018.

    Article  Google Scholar 

  7. Stefańska K, Zieliński M, Jankowiak M, Zamkowska D, Sakowska J, Adamski P, et al. Cytokine imprint in preeclampsia. Front Immunol. 2021;12:667841. https://doi.org/10.3389/fimmu.2021.667841.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deng C, Ji X, Rainey C, Zhang J, Lu W. Integrating machine learning with human knowledge. iScience. 2020;23:101656 https://doi.org/10.1016/j.isci.2020.101656.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. 2021;2:160. https://doi.org/10.1007/s42979-021-00592-x.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Varghese B, Jala A, Meka S, Adla D, Jangili S, Talukdar RK, et al. Integrated metabolomics and machine learning approach to predict hypertensive disorders of pregnancy. Am J Obstet Gynecol MFM. 2022;5:100829. https://doi.org/10.1016/j.ajogmf.2022.100829.

    Article  CAS  PubMed  Google Scholar 

  11. Redman CWG, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63:534–43. https://doi.org/10.1111/j.1600-0897.2010.00831.x.

    Article  CAS  PubMed  Google Scholar 

  12. Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta. 1983;4:397–413. https://doi.org/10.1016/s0143-4004(83)80043-5.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161:1200–4. https://doi.org/10.1016/0002-9378(89)90665-0.

    Article  CAS  PubMed  Google Scholar 

  14. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–92. https://doi.org/10.1146/annurev-pathol-121808-102149.

    Article  CAS  PubMed  Google Scholar 

  15. Yockey LJ, Iwasaki A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity. 2018;49:397–412. https://doi.org/10.1016/j.immuni.2018.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomes CP, Torloni MR, Gueuvoghlanian-Silva BY, Alexandre SM, Mattar R, Daher S. Cytokine levels in gestational diabetes mellitus: a systematic review of the literature. Am J Reprod Immunol. 2013;69:545–57. https://doi.org/10.1111/aji.12088.

    Article  CAS  PubMed  Google Scholar 

  17. Singh N, Perfect JR. Immune reconstitution syndrome and exacerbation of infections after pregnancy. Clin Infect Dis. 2007;45:1192–9. https://doi.org/10.1086/522182.

    Article  PubMed  Google Scholar 

  18. Abell SK, De Courten B, Boyle JA, Teede HJ. Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci. 2015;16:13442–73. https://doi.org/10.3390/ijms160613442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adela R, Borkar RM, Mishra N, Bhandi MM, Vishwakarma G, Varma BA, et al. Lower serum vitamin D metabolite levels in relation to circulating cytokines/chemokines and metabolic hormones in pregnant women with hypertensive disorders. Front Immunol. 2017;8:273. https://doi.org/10.3389/fimmu.2017.00273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yarim GF, Karahan S, Nisbet C. Elevated plasma levels of interleukin 1 beta, tumour necrosis factor alpha and monocyte chemotactic protein 1 are associated with pregnancy toxaemia in ewes. Vet Res Commun. 2007;31:565–73. https://doi.org/10.1007/s11259-007-3551-1.

    Article  CAS  PubMed  Google Scholar 

  21. Mellembakken JR, Solum NO, Ueland T, Videm V, Aukrust P. Increased concentrations of soluble CD40 ligand, RANTES and GRO-alpha in preeclampsia–possible role of platelet activation. Thromb Haemost. 2001;86:1272–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kauma S, Takacs P, Scordalakes C, Walsh S, Green K, Peng T. Increased endothelial monocyte chemoattractant protein-1 and interleukin-8 in preeclampsia. Obstet Gynecol. 2002;100:706–14. https://doi.org/10.1016/s0029-7844(02)02169-5.

    Article  CAS  PubMed  Google Scholar 

  23. Hentschke MR, Krauspenhar B, Guwzinski A, Caruso FB, Silveira ID, Antonello IC, et al. PP040. Expression of RANTES (CCL5) in maternal plasma, fetal plasma and placenta in pre-eclampsia and normotensive controls. Pregnancy Hypertens. 2012;2:263. https://doi.org/10.1016/j.preghy.2012.04.151.

    Article  CAS  PubMed  Google Scholar 

  24. Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature. 1987;325:257–9. https://doi.org/10.1038/325257a0.

    Article  CAS  PubMed  Google Scholar 

  25. Lindner V, Lappi DA, Baird A, Majack RA, Reidy MA. Role of basic fibroblast growth factor in vascular lesion formation. Circ Res. 1991;68:106–13. https://doi.org/10.1161/01.res.68.1.106.

    Article  CAS  PubMed  Google Scholar 

  26. Lindner V, Majack RA, Reidy MA. Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J Clin Invest. 1990;85:2004–8. https://doi.org/10.1172/JCI114665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krishnamurthy P, Bird IM, Sheppard C, Magness RR. Effects of angiogenic growth factors on endothelium-derived prostacyclin production by ovine uterine and placental arteries. Prostaglandins Other Lipid Mediat. 1999;57:1–12. https://doi.org/10.1016/s0090-6980(98)00066-5.

    Article  CAS  PubMed  Google Scholar 

  28. Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol. 1998;179:1359–75. https://doi.org/10.1016/s0002-9378(98)70160-7.

    Article  CAS  PubMed  Google Scholar 

  29. Roberts JM, Redman CW. Pre-eclampsia: more than pregnancy-induced hypertension. Lancet. 1993;341:1447–51. https://doi.org/10.1016/0140-6736(93)90889-o.

    Article  CAS  PubMed  Google Scholar 

  30. Kurz C, Hefler L, Zeisler H, Schatten C, Husslein P, Tempfer C. Maternal basic fibroblast growth factor serum levels are associated with pregnancy-induced hypertension. J Soc Gynecol Investig. 2001;8:24–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hohlagschwandtner M, Knöfler M, Ploner M, Zeisler H, Joura EA, Husslein P. Basic fibroblast growth factor and hypertensive disorders in pregnancy. Hypertens Pregnancy. 2002;21:235–41. https://doi.org/10.1081/PRG-120016790.

    Article  CAS  PubMed  Google Scholar 

  32. Ozkan S, Vural B, Filiz S, Coştur P, Dalçik H. Placental expression of insulin-like growth factor-I, fibroblast growth factor-basic, and neural cell adhesion molecule in preeclampsia. J Matern Fetal Neonatal Med. 2008;21:831–8. https://doi.org/10.1080/14767050802251024.

    Article  CAS  PubMed  Google Scholar 

  33. Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal serum cytokine concentrations in healthy pregnancy and preeclampsia. J Pregnancy. 2021;2021:6649608. https://doi.org/10.1155/2021/6649608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang L, Chen C-H, Yu C-H, Chang CH, Chang FM. An association study of interleukin-4 gene and preeclampsia in Taiwan. Taiwan J Obstet Gynecol. 2014;53:215–9. https://doi.org/10.1016/j.tjog.2014.04.017.

    Article  PubMed  Google Scholar 

  35. Cemgil Arikan D, Aral M, Coskun A, Ozer A. Plasma IL-4, IL-8, IL-12, interferon-γ and CRP levels in pregnant women with preeclampsia, and their relation with severity of disease and fetal birth weight. J Matern Fetal Neonatal Med. 2012;25:1569–73. https://doi.org/10.3109/14767058.2011.648233.

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjee P, Chiasson VL, Seerangan G, Tobin RP, Kopriva SE, Newell-Rogers MK, et al. Cotreatment with interleukin 4 and interleukin 10 modulates immune cells and prevents hypertension in pregnant mice. Am J Hypertens. 2015;28:135–42. https://doi.org/10.1093/ajh/hpu100.

    Article  CAS  PubMed  Google Scholar 

  37. Chatterjee P, Kopriva SE, Chiasson VL, Young KJ, Tobin RP, Newell-Rogers K, et al. Interleukin-4 deficiency induces mild preeclampsia in mice. J Hypertens. 2013;31:1414–23. https://doi.org/10.1097/HJH.0b013e328360ae6c.

    Article  CAS  PubMed  Google Scholar 

  38. Cottrell JN, Amaral LM, Harmon A, Cornelius DC, Cunningham MW, Vaka VR, et al. Interleukin-4 supplementation improves the pathophysiology of hypertension in response to placental ischemia in RUPP rats. Am J Physiol Regul Integr Comp Physiol. 2019;316:R165–71. https://doi.org/10.1152/ajpregu.00167.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chau SE, Murthi P, Wong MH, Whitley GS, Brennecke SP, Keogh RJ. Control of extravillous trophoblast function by the eotaxins CCL11, CCL24 and CCL26. Hum Reprod. 2013;28:1497–507. https://doi.org/10.1093/humrep/det060.

    Article  CAS  PubMed  Google Scholar 

  40. Du M, Basu A, Fu D, Wu M, Centola M, Jenkins AJ, et al. Serum inflammatory markers and preeclampsia in type 1 diabetes: a prospective study. Diabetes Care. 2013;36:2054–61. https://doi.org/10.2337/dc12-1934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jonsson Y, Rubèr M, Matthiesen L, Berg G, Nieminen K, Sharma S, et al. Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J Reprod Immunol. 2006;70:83–91. https://doi.org/10.1016/j.jri.2005.10.007.

    Article  CAS  PubMed  Google Scholar 

  42. Khetsuriani T, Chabashvili N, Sanikidze T. Role of endothelin-1 and nitric oxide level in pathogenesis preeclampsia. Georgian Med News. 2006;141:17–21.

  43. George EM, Granger JP. Endothelin: key mediator of hypertension in preeclampsia. Am J Hypertens. 2011;24:964–9. https://doi.org/10.1038/AJH.2011.99.

    Article  CAS  PubMed  Google Scholar 

  44. Aggarwal PK, Chandel N, Jain V, Jha V. The relationship between circulating endothelin-1, soluble fms-like tyrosine kinase-1 and soluble endoglin in preeclampsia. J Hum Hypertens. 2012;26:236–41. https://doi.org/10.1038/jhh.2011.29.

    Article  CAS  PubMed  Google Scholar 

  45. Lu Y-P, Hasan AA, Zeng S, Hocher B. Plasma ET-1 concentrations are elevated in pregnant women with hypertension -meta-analysis of clinical studies. Kidney Blood Press Res. 2017;42:654–63. https://doi.org/10.1159/000482004.

    Article  CAS  PubMed  Google Scholar 

  46. Verdonk K, Saleh L, Lankhorst S, Smilde JE, van Ingen MM, Garrelds IM, et al. Association studies suggest a key role for endothelin-1 in the pathogenesis of preeclampsia and the accompanying renin-angiotensin-aldosterone system suppression. Hypertension. 2015;65:1316–23. https://doi.org/10.1161/HYPERTENSIONAHA.115.05267.

    Article  CAS  PubMed  Google Scholar 

  47. Saleh L, Verdonk K, Visser W, van den Meiracker AH, Danser AH. The emerging role of endothelin-1 in the pathogenesis of pre-eclampsia. Ther Adv Cardiovasc Dis. 2016;10:282–93. https://doi.org/10.1177/1753944715624853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor RN, Varma M, Teng NN, Roberts JM. Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab. 1990;71:1675–7. https://doi.org/10.1210/jcem-71-6-1675.

    Article  CAS  PubMed  Google Scholar 

  49. Eddy AC, Bidwell GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ. 2018;9:36. https://doi.org/10.1186/s13293-018-0195-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tripathi R, Ralhan R, Saxena S, Salhan S, Rath G. Soluble VEGFR-1 in pathophysiology of pregnancies complicated by hypertensive disorders: the Indian scenario. J Hum Hypertens. 2013;27:107–14. https://doi.org/10.1038/jhh.2012.2.

    Article  CAS  PubMed  Google Scholar 

  51. Tang Y, Ye W, Liu X, Lv Y, Yao C, Wei J. VEGF and sFLT-1 in serum of PIH patients and effects on the foetus. Exp Ther Med. 2019;17:2123–8. https://doi.org/10.3892/etm.2019.7184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amosco MD, Villar VA, Naniong JM, David-Bustamante LM, Jose PA, Palmes-Saloma CP. VEGF-A and VEGFR1 SNPs associate with preeclampsia in a Philippine population. Clin Exp Hypertens. 2016;38:578–85. https://doi.org/10.3109/10641963.2016.1174252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herraiz I, Llurba E, Verlohren S, Galindo A, Spanish Group for the Study of Angiogenic Markers in P. Update on the diagnosis and prognosis of preeclampsia with the aid of the sFlt-1/ PlGF ratio in singleton pregnancies. Fetal Diagn Ther. 2018;43:81–9. https://doi.org/10.1159/000477903.

    Article  PubMed  Google Scholar 

  54. Ding G, Liping L, Moli D, Wuliyeti A, Shaohe Z, Huijuan W, et al. A study of the association between the sFlt-1/PIGF ratio and preeclampsia in Xinjiang Uygur Autonomous Region of China. Artif Cells Nanomed Biotechnol. 2018;46:S281–6. https://doi.org/10.1080/21691401.2018.1491480.

    Article  CAS  PubMed  Google Scholar 

  55. Karge A, Seiler A, Flechsenhar S, Haller B, Ortiz JU, Lobmaier SM, et al. Prediction of adverse perinatal outcome and the mean time until delivery in twin pregnancies with suspected pre-eclampsia using sFlt-1/PIGF ratio. Pregnancy Hypertens. 2021;24:37–43. https://doi.org/10.1016/j.preghy.2021.02.003.

    Article  PubMed  Google Scholar 

  56. Verlohren S, Galindo A, Schlembach D, Zeisler H, Herraiz I, Moertl MG, et al. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol. 2010;202:161.e1–161.e11. https://doi.org/10.1016/j.ajog.2009.09.016.

    Article  CAS  PubMed  Google Scholar 

  57. Maynard SE, Min J-Y, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–58. https://doi.org/10.1172/JCI17189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mazer Zumaeta A, Wright A, Syngelaki A, Maritsa VA, Da Silva AB, Nicolaides KH. Screening for pre-eclampsia at 11-13 weeks’ gestation: use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound Obstet Gynecol J Int Soc Ultrasound Obstet Gynecol. 2020;56:400–7. https://doi.org/10.1002/uog.22093.

    Article  CAS  Google Scholar 

  59. Roth I, Corry DB, Locksley RM, Abrams JS, Litton MJ, Fisher SJ. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med. 1996;184:539–48. https://doi.org/10.1084/jem.184.2.539.

    Article  CAS  PubMed  Google Scholar 

  60. Sonek J, Krantz D, Carmichael J, Downing C, Jessup K, Haidar Z, et al. First-trimester screening for early and late preeclampsia using maternal characteristics, biomarkers, and estimated placental volume. Am J Obstet Gynecol. 2018;218:126.e1–126.e13. https://doi.org/10.1016/j.ajog.2017.10.024.

    Article  PubMed  Google Scholar 

  61. Venny 2.1.0. https://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 21 Apr 2023.

Download references

Acknowledgements

The authors sincerely acknowledge the Department of Pharmaceuticals (DoP) under the Ministry of Chemicals and Fertilizers, Government of India, and Dr. USN Murty, Director, NIPER-G for their extensive support.

Funding

This study is funded by the Institutional Core Grant, NIPER-Guwahati, Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study: RA, and BV. Statistical and Bioinformatic analysis: JVNJ, SJ, SRM, BV and RA. Clinical study: BV, CAJ, RA and RKT. Draft manuscript preparation: BV, RA, JVNJ, SJ, and SRM. Final manuscript preparation: BV and RA.

Corresponding author

Correspondence to Ramu Adela.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, B., Joy, C.A., Josyula, J.V.N. et al. Machine learning-based protein signatures for differentiating hypertensive disorders of pregnancy. Hypertens Res 46, 2513–2526 (2023). https://doi.org/10.1038/s41440-023-01348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01348-1

Keywords

This article is cited by

Search

Quick links