Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel vaccine targeting β1-adrenergic receptor

Abstract

Beta-blockers are widely used in the treatment of hypertension, heart failure and ischemic heart disease. However, unstandardized medication results in diverse clinical outcomes in patients. The main causes are unattained optimal doses, insufficient follow-up and patients’ poor adherence. To improve the medication inadequacy, our team developed a novel therapeutic vaccine targeting β1-adrenergic receptor (β1-AR). The β1-AR vaccine named ABRQβ-006 was prepared by chemical conjugation of a screened β1-AR peptide with Qβ virus like particle (VLP). The antihypertensive, anti-remodeling and cardio-protective effects of β1-AR vaccine were evaluated in different animal models. The ABRQβ-006 vaccine was immunogenic that induced high titers of antibodies against β1-AR epitope peptide. In the NG-nitro-L-arginine methyl ester (L-NAME) + Sprague Dawley (SD) hypertension model, ABRQβ-006 lowered systolic blood pressure about 10 mmHg and attenuated vascular remodeling, myocardial hypertrophy and perivascular fibrosis. In the pressure-overload transverse aortic constriction (TAC) model, ABRQβ-006 significantly improved cardiac function, decreased myocardial hypertrophy, perivascular fibrosis and vascular remodeling. In the myocardial infarction (MI) model, ABRQβ-006 effectively improved cardiac remodeling, reduced cardiac fibrosis and inflammatory infiltration, which was superior to metoprolol. Moreover, no significant immune-mediated damage was observed in immunized animals. The ABRQβ-006 vaccine targeting β1-AR showed the effects on hypertension and heart rate control, myocardial remodeling inhibition and cardiac function protection. These effects could be differentiated in different types of diseases with diverse pathogenesis. ABRQβ-006 could be a novel and promising method for the treatment of hypertension and heart failure with different etiologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981–88.

    CAS  PubMed  Google Scholar 

  3. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res. 2013;113:739–53.

    CAS  PubMed  Google Scholar 

  4. Shang L, Zhang L, Shao M, Feng M, Shi J, Dong Z, et al. Elevated beta1-adrenergic receptor autoantibody levels increase atrial fibrillation susceptibility by promoting atrial fibrosis. Front Physiol. 2020;11:76.

    PubMed  PubMed Central  Google Scholar 

  5. Steinberg SF. Beta1-adrenergic receptor regulation revisited. Circ Res. 2018;123:1199–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci. 2006;100:323–37.

    CAS  PubMed  Google Scholar 

  7. Woo AY, Xiao RP. beta-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin. 2012;33:335–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Teerlink JR, Massie BM. The role of beta-blockers in preventing sudden death in heart failure. J Card Fail. 2000;6:25–33.

    CAS  PubMed  Google Scholar 

  9. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.

  10. Lu J, Lu Y, Wang X, Li X, Linderman GC, Wu C, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet. 2017;390:2549–58.

    PubMed  Google Scholar 

  11. NCD Risk Factor Collaboration (NCD-RisC). Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys. Lancet. 2019;394:639–51.

  12. Foody JM, Farrell MH, Krumholz HM. beta-Blocker therapy in heart failure: scientific review. JAMA. 2002;287:883–89.

    CAS  PubMed  Google Scholar 

  13. Yang J, Liu Y, Fan X, Li Z, Cheng Y. A pathway and network review on beta-adrenoceptor signaling and beta blockers in cardiac remodeling. Heart Fail Rev. 2014;19:799–814.

    CAS  PubMed  Google Scholar 

  14. Brophy JM, Joseph L, Rouleau JL. Beta-blockers in congestive heart failure. A Bayesian meta-analysis. Ann Intern Med. 2001;134:550–60.

    CAS  PubMed  Google Scholar 

  15. Chen ZM, Pan HC, Chen YP, Peto R, Collins R, Jiang LX, et al. Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005;366:1622–32.

    CAS  PubMed  Google Scholar 

  16. Pizarro G, Fernández-Friera L, Fuster V, Fernández-Jiménez R, García-Ruiz JM, García-Álvarez A, et al. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction). J Am Coll Cardiol. 2014;63:2356–62.

    CAS  PubMed  Google Scholar 

  17. García-Ruiz JM, Fernández-Jiménez R, García-Alvarez A, Pizarro G, Galán-Arriola C, Fernández-Friera L, et al. Impact of the timing of metoprolol administration during STEMI on infarct size and ventricular function. J Am Coll Cardiol. 2016;67:2093–104.

    PubMed  Google Scholar 

  18. Wang J, Mamuti M, Wang H. Therapeutic vaccines for cancer immunotherapy. ACS Biomater Sci Eng. 2020;6:6036–52.

    CAS  PubMed  Google Scholar 

  19. Bachmann MF, Jennings GT. Therapeutic vaccines for chronic diseases: successes and technical challenges. Philos Trans R Soc Lond B Biol Sci. 2011;366:2815–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Qiu Z, Yang S, Ding D, Chen F, Zhou Y, et al. Effectiveness and safety of a therapeutic vaccine against angiotensin II receptor type 1 in hypertensive animals. Hypertension. 2013;61:408–16.

    CAS  PubMed  Google Scholar 

  21. Li C, Yan X, Wu D, Zhang K, Liang X, Pan Y, et al. Vaccine targeted alpha 1D-adrenergic receptor for hypertension. Hypertension. 2019;74:1551–62.

    CAS  PubMed  Google Scholar 

  22. Dai Y, Chen X, Song X, Chen X, Ma W, Lin J, et al. Immunotherapy of endothelin-1 receptor type A for pulmonary arterial hypertension. J Am Coll Cardiol. 2019;73:2567–80.

    CAS  PubMed  Google Scholar 

  23. Freedman NJ, Lefkowitz RJ. Anti-beta(1)-adrenergic receptor antibodies and heart failure: causation, not just correlation. J Clin Investig. 2004;113:1379–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hébert TE. Anti-beta1AR antibodies in dilated cardiomyopathy: are these a new class of receptor agonists? Cardiovasc Res. 2007;76:5–7.

    PubMed  Google Scholar 

  25. Jahns R, Boivin V, Lohse MJ. beta(1)-Adrenergic receptor function, autoimmunity, and pathogenesis of dilated cardiomyopathy. Trends Cardiovasc Med. 2006;16:20–24.

    CAS  PubMed  Google Scholar 

  26. Nikolaev VO, Boivin V, Störk S, Angermann CE, Ertl G, Lohse MJ, et al. A novel fluorescence method for the rapid detection of functional beta1-adrenergic receptor autoantibodies in heart failure. J Am Coll Cardiol. 2007;50:423–31.

    CAS  PubMed  Google Scholar 

  27. Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol. 2010;73:404–12.

    CAS  Google Scholar 

  28. Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol. 2011;46:81–99.

    CAS  PubMed  Google Scholar 

  29. Furmaniak J, Sanders J, Núñez Miguel R, Rees Smith B. Mechanisms of Action of TSHR Autoantibodies. Horm Metab Res. 2015;47:735–52.

    CAS  PubMed  Google Scholar 

  30. Wallukat G, Morwinski M, Kowal K, Förster A, Boewer V, Wollenberger A. Autoantibodies against the beta-adrenergic receptor in human myocarditis and dilated cardiomyopathy: beta-adrenergic agonism without desensitization. Eur Heart J. 1991;12:178–81.

    PubMed  Google Scholar 

  31. Magnusson Y, Wallukat G, Waagstein F, Hjalmarson A, Hoebeke J. Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the beta 1-adrenoceptor with positive chronotropic effect. Circulation. 1994;89:2760–67.

    CAS  PubMed  Google Scholar 

  32. Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F. Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation. 1999;99:649–54.

    CAS  PubMed  Google Scholar 

  33. Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Investig. 2004;113:1419–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwata M, Yoshikawa T, Baba A, Anzai T, Mitamura H, Ogawa S. Autoantibodies against the second extracellular loop of beta1-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2001;37:418–24.

    CAS  PubMed  Google Scholar 

  35. Borda E, Pascual J, Cossio P, De La Vega M, Arana R, Sterin-Borda L. A circulating IgG in Chagas’ disease which binds to beta-adrenoceptors of myocardium and modulates their activity. Clin Exp Immunol. 1984;57:679–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Boivin-Jahns V, Uhland K, Holthoff HP, Beyersdorf N, Kocoski V, Kerkau T, et al. Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure. PLoS One. 2018;13:e0201160.

    PubMed  PubMed Central  Google Scholar 

  37. Jin H, Kishida K, Arase N, Matsuoka S, Nakai W, Kohyama M, et al. Abrogation of self-tolerance by misfolded self-antigens complexed with MHC class II molecules. Sci Adv. 2022;8:eabj9867.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 2001;22:443–49.

    CAS  PubMed  Google Scholar 

  39. Valesini G, Gerardi MC, Iannuccelli C, Pacucci VA, Pendolino M, Shoenfeld Y. Citrullination and autoimmunity. Autoimmun Rev. 2015;14:490–97.

    CAS  PubMed  Google Scholar 

  40. Liu C, Luo R, Elliott SE, Wang W, Parchim NF, Iriyama T, et al. Elevated transglutaminase activity triggers angiotensin receptor activating autoantibody production and pathophysiology of preeclampsia. J Am Heart Assoc. 2015;4:e002323.

  41. Wenzel K, Rajakumar A, Haase H, Geusens N, Hubner N, Schulz H, et al. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension. 2011;58:77–84.

    CAS  PubMed  Google Scholar 

  42. Freemantle N, Cleland J, Young P, Mason J, Harrison J. beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ. 1999;318:1730–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Fan Z, Xu C, Yan X, Zhou Y, Qiu Z, et al. Anti-ATR001 monoclonal antibody ameliorates atherosclerosis through beta-arrestin2 pathway. Biochem Biophys Res Commun. 2021;544:1–7.

    CAS  PubMed  Google Scholar 

  44. Gorre F, Vandekerckhove H. Beta-blockers: focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol. 2010;65:565–70.

    PubMed  Google Scholar 

  45. Pan Y, Zhou Y, Wu H, Chen X, Hu X, Zhang H, et al. A therapeutic peptide vaccine against PCSK9. Sci Rep. 2017;7:12534.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Project of the National Natural Science Foundation of China (Nos. 81974055, 82070522, 81974106, 82070378).

Author information

Authors and Affiliations

Authors

Contributions

FK, WK, XH, ZQ and ZZ conceptualized the project. FK, WK and XH performed experiments. CL, WM, DS and ZW analyzed and interpreted data. XL analyzed the statistics. YZ and YL provided technical guidance. FK, WK and XH wrote the manuscript. YL, ZQ and ZZ supplied funds support. Co-first authors are ranked in the order in which they participated in the experiment. All authors reviewed the manuscript and discussed the work.

Corresponding authors

Correspondence to Zhihua Qiu or Zihua Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics statement

This study was strictly performed according to the recommendations in the Guide for the Care and Use of Laboratory Animals (Science & Technology Department of Hubei Province, China, 2005). The protocol was approved by Animal Care and Use Committee of Hubei Province (Nos. 110324211101061211, 42010200003531, 110011211112453856 and 42010200007174). The animals were fed in a specific pathogen-free animal housing facility with 22  °C  ±  2  °C temperature, 60% ±5% relative humidity and a 12:12 light: dark cycle. Sterile water and rodent chow were available ad libitum. Every effort was made to minimize animal pain, suffering and distress and to reduce the numbers of animals used. All surgeries were performed under sodium pentobarbital anesthesia.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, F., Kuang, W., Hu, X. et al. A novel vaccine targeting β1-adrenergic receptor. Hypertens Res 46, 1582–1595 (2023). https://doi.org/10.1038/s41440-023-01265-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01265-3

Keywords

This article is cited by

Search

Quick links