Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of resveratrol supplementation on cardiac remodeling in hypertensive patients: a randomized controlled clinical trial

Abstract

Resveratrol (RES) has been demonstrated to be protective in the cardiovascular system in animal studies, but the evidence is limited in humans. The purpose of the study was to evaluate the effect of RES supplementation on cardiac remodeling in patients with hypertension. Eighty Subjects were randomly divided into RES group (plus RES 400 mg/d in addition to conventional therapy, n = 43) and control group (conventional therapy, n = 37). The main outcomes of the study were changes within cardiac-remodeling parameters. Secondary outcomes were changes in anthropometric parameters, arterial stiffness parameters and mechanism indices. There was no statistically significant difference between the RES group and control group in terms of baseline characteristics. After 6 months, the RES group had smaller left atrial, lower E/e’, higher left ventricular global longitudinal strain and lower biomarkers indicating cardiac fibrosis (expressed by decreases in procollagen type I C-peptide and galectin-3) compared to the control group. However, there was no significant difference in left ventricular structure between the two groups. Although the RES group showed a significant decrease in brachial-ankle pulse wave velocity compared to the pre-intervention value, the difference between the RES and the control groups was not obvious. What’s more, compared with the control group, the serum levels of sirtuin3, superoxide dismutase and klotho were significantly increased in the RES group. In conclusion, RES supplementation can alleviate left atrial remodeling, improve left ventricular diastolic function and may alleviate cardiac fibrosis in hypertensive patients, and could be used as an adjunct to conventional therapies of hypertensive heart disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223–49.

  2. GBD 2019 Risk Factors Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–22.

  3. Jiang X, Shao M, Liu X, Liu X, Zhang X, Wang Y, et al. Reversible treatment of pressure overload-induced left ventricular hypertrophy through Drd5 nucleic acid delivery mediated by functional polyaminoglycoside. Adv Sci. 2021;8:2003706.

    Article  CAS  Google Scholar 

  4. Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    Article  CAS  PubMed  Google Scholar 

  5. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292:2350–6.

    Article  CAS  PubMed  Google Scholar 

  6. Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54:1084–91.

    Article  CAS  PubMed  Google Scholar 

  7. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115:41–46.

    Article  PubMed  Google Scholar 

  8. Batista-Jorge GC, Barcala-Jorge AS, Silveira MF, Lelis DF, Andrade J, de Paula A, et al. Oral resveratrol supplementation improves metabolic syndrome features in obese patients submitted to a lifestyle-changing program. Life Sci. 2020;256:117962.

    Article  CAS  PubMed  Google Scholar 

  9. Sattarinezhad A, Roozbeh J, Shirazi YB, Omrani GR, Shams M. Resveratrol reduces albuminuria in diabetic nephropathy: a randomized double-blind placebo-controlled clinical trial. Diabetes Metab. 2019;45:53–59.

    Article  CAS  PubMed  Google Scholar 

  10. Hoseini A, Namazi G, Farrokhian A, Reiner Z, Aghadavod E, Bahmani F, et al. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct. 2019;10:6042–51.

    Article  CAS  PubMed  Google Scholar 

  11. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14:612–22.

    Article  CAS  PubMed  Google Scholar 

  12. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015;85:1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta PK, DiPette DJ, Supowit SC. Protective effect of resveratrol against pressure overload-induced heart failure. Food Sci Nutr. 2014;2:218–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dolinsky VW, Chakrabarti S, Pereira TJ, Oka T, Levasseur J, Beker D, et al. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim Biophys Acta. 2013;1832:1723–33.

    Article  CAS  PubMed  Google Scholar 

  15. Thandapilly SJ, Wojciechowski P, Behbahani J, Louis XL, Yu L, Juric D, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens. 2010;23:192–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida Y, Shioi T, Izumi T. Resveratrol ameliorates experimental autoimmune myocarditis. Circ J. 2007;71:397–404.

    Article  CAS  PubMed  Google Scholar 

  17. Muiesan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Viola S, et al. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2004;43:731–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.

    Article  PubMed  Google Scholar 

  19. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28:183–93.

    Article  PubMed  Google Scholar 

  20. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.

    Article  PubMed  Google Scholar 

  21. Cesana BM, Antonelli P. Sample size calculations in clinical research should also be based on ethical principles. Trials. 2016;17:149.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yoshida C, Goda A, Naito Y, Nakaboh A, Matsumoto M, Otsuka M, et al. Role of plasma aldosterone concentration in regression of left-ventricular mass following antihypertensive medication. J Hypertens. 2011;29:357–63.

    Article  CAS  PubMed  Google Scholar 

  23. Seyyedebrahimi S, Khodabandehloo H, Nasli EE, Meshkani R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol. 2018;55:341–53.

    Article  CAS  PubMed  Google Scholar 

  24. Querejeta R, Varo N, Lopez B, Larman M, Artinano E, Etayo JC, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101:1729–35.

    Article  CAS  PubMed  Google Scholar 

  25. López B, González A, Ravassa S, Beaumont J, Moreno MU, San José G, et al. Circulating biomarkers of myocardial fibrosis. J Am Coll Cardiol. 2015;65:2449–56.

    Article  PubMed  Google Scholar 

  26. Zhong X, Qian X, Chen G, Song X. The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharm Physiol. 2019;46:197–203.

    Article  CAS  Google Scholar 

  27. Zhang T, Cao S, Yang H, Li J. Prognostic impact of galectin-3 in chronic kidney disease patients: a systematic review and meta-analysis. Int Urol Nephrol. 2019;51:1005–11.

    Article  PubMed  Google Scholar 

  28. Ko WC, Choy CS, Lin WN, Chang SW, Liou JC, Tung TH, et al. Galectin-3 interacts with vascular cell adhesion molecule-1 to increase cardiovascular mortality in hemodialysis patients. J Clin Med. 2018;7:300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wojciechowski P, Juric D, Louis XL, Thandapilly SJ, Yu L, Taylor C, et al. Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats. J Nutr. 2010;140:962–8.

    Article  CAS  PubMed  Google Scholar 

  30. Gal R, Deres L, Horvath O, Eros K, Sandor B, Urban P, et al. Resveratrol improves heart function by moderating inflammatory processes in patients with systolic heart failure. Antioxidants. 2020;9:1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bagul PK, Katare PB, Bugga P, Dinda AK, Banerjee SK. SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells. 2018;7:235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sung MM, Das SK, Levasseur J, Byrne NJ, Fung D, Kim TT, et al. Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism. Circ Heart Fail. 2015;8:128–37.

    Article  CAS  PubMed  Google Scholar 

  33. Vilar-Pereira G, Carneiro VC, Mata-Santos H, Vicentino AR, Ramos IP, Giarola NL, et al. Resveratrol reverses functional chagas heart disease in mice. Plos Pathog. 2016;12:e1005947.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lau ES, Liu E, Paniagua SM, Sarma AA, Zampierollo G, Lopez B, et al. Galectin-3 inhibition with modified citrus pectin in hypertension. JACC Basic Transl Sci. 2021;6:12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang HN, Li JL, Xu T, Yao HQ, Chen GH, Hu J. Effects of Sirt3autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Mol Med Rep. 2020;22:1342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zou LX, Chen C, Yan X, Lin QY, Fang J, Li PB, et al. Resveratrol attenuates pressure overload-induced cardiac fibrosis and diastolic dysfunction via PTEN/AKT/Smad2/3 and NF-kappaB signaling pathways. Mol Nutr Food Res. 2019;63:e1900418.

    Article  PubMed  Google Scholar 

  37. de Ligt M, Bruls Y, Hansen J, Habets MF, Havekes B, Nascimento E, et al. Resveratrol improves ex vivo mitochondrial function but does not affect insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes. Mol Metab. 2018;12:39–47.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tome-Carneiro J, Gonzalvez M, Larrosa M, Yanez-Gascon MJ, Garcia-Almagro FJ, Ruiz-Ros JA, et al. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013;27:37–48.

    Article  CAS  PubMed  Google Scholar 

  39. Imamura H, Yamaguchi T, Nagayama D, Saiki A, Shirai K, Tatsuno I. Resveratrol ameliorates arterial stiffness assessed by cardio-ankle vascular index in patients with type 2 diabetes mellitus. Int Heart J. 2017;58:577–83.

    Article  CAS  PubMed  Google Scholar 

  40. Sahebkar A, Serban C, Ursoniu S, Wong ND, Muntner P, Graham IM, et al. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors-results from a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 2015;189:47–55.

    Article  PubMed  Google Scholar 

  41. Wang Y, Kuro-o M, Sun Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell. 2012;11:410–7.

    Article  PubMed  Google Scholar 

  42. Kim HJ, Kang E, Oh YK, Kim YH, Han SH, Yoo TH, et al. The association between soluble klotho and cardiovascular parameters in chronic kidney disease: results from the KNOW-CKD study. BMC Nephrol. 2018;19:51.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thongprayoon C, Neyra JA, Hansrivijit P, Medaura J, Leeaphorn N, Davis PW, et al. Serum klotho in living kidney donors and kidney transplant recipients: a meta-analysis. J Clin Med. 2020;9:1834.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ding HY, Ma HX. Significant roles of anti-aging protein klotho and fibroblast growth factor23 in cardiovascular disease. J Geriatr Cardiol. 2015;12:439–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie J, Cha SK, An SW, Kuro-O M, Birnbaumer L, Huang CL. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238.

    Article  PubMed  Google Scholar 

  46. Mattison JA, Wang M, Bernier M, Zhang J, Park SS, Maudsley S, et al. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab. 2014;20:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu SC, Huang SM, Chen A, Sun CY, Lin SH, Chen JS, et al. Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway. Int J Biochem Cell Biol. 2014;53:361–71.

    Article  CAS  PubMed  Google Scholar 

  48. Mehta J, Rayalam S, Wang X. Cytoprotective effects of natural compounds against oxidative stress. Antioxidants. 2018;7:147.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez A, Schelbert EB, Diez J, Butler J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol. 2018;71:1696–706.

    Article  PubMed  Google Scholar 

  50. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lok DJ, Lok SI, Bruggink-Andre DLPP, Badings E, Lipsic E, van Wijngaarden J, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102:103–10.

    Article  CAS  PubMed  Google Scholar 

  52. Lopez B, Gonzalez A, Ravassa S, Beaumont J, Moreno MU, San JG, et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol. 2015;65:2449–56.

    Article  CAS  PubMed  Google Scholar 

  53. Lopez B, Ravassa S, Moreno MU, Jose GS, Beaumont J, Gonzalez A, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 2021;18:479–98.

    Article  PubMed  Google Scholar 

  54. Raafs AG, Verdonschot J, Henkens M, Adriaans BP, Wang P, Derks K, et al. The combination of carboxy-terminal propeptide of procollagen type I blood levels and late gadolinium enhancement at cardiac magnetic resonance provides additional prognostic information in idiopathic dilated cardiomyopathy—a multilevel assessment of myocardial fibrosis in dilated cardiomyopathy. Eur J Heart Fail. 2021;23:933–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Figdraw (www.figdraw.com) for its help in creating the Graphical Abstract.

Funding

This work was supported by National Key R&D Plan of China (No. 2017YFC1700502), Natural Science Foundation of Shandong Province (ZR2021MH011).

Author information

Authors and Affiliations

Authors

Contributions

Zheng X: Conceptualization, Investigation, Writing – original draft. Hai J: Investigation, Formal analysis. Yang Y: Investigation, Formal analysis. Zhang C: Validation. Ma X: Conceptualization. Kong B: Validation, Methodology. Zhao Y: Methodology, Resources. Hu Y: Investigation. Bu P: Resources, Writing – review & editing, Supervision, Project administration, Funding acquisition. Ti Y: Validation, Methodology, Writing – review & editing, Supervision,

Corresponding authors

Correspondence to Peili Bu or Yun Ti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Research Ethics Committee of Shandong University Qilu Hospital (Permit number: 2018-055). Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Hai, J., Yang, Y. et al. Effects of resveratrol supplementation on cardiac remodeling in hypertensive patients: a randomized controlled clinical trial. Hypertens Res 46, 1493–1503 (2023). https://doi.org/10.1038/s41440-023-01231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01231-z

Keywords

This article is cited by

Search

Quick links