Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aerobic exercise improves central blood pressure and blood pressure variability among patients with resistant hypertension: results of the EnRicH trial

Abstract

Central blood pressure (BP) and BP variability are associated with cardiovascular disease risk. However, the influence of exercise on these hemodynamic parameters is unknown among patients with resistant hypertension. The EnRicH (The Exercise Training in the Treatment of Resistant Hypertension) was a prospective, single-blinded randomized clinical trial (NCT03090529). Sixty patients were randomized to a 12-week aerobic exercise program or usual care. The outcome measures include central BP, BP variability, heart rate variability, carotid-femoral pulse wave velocity, and circulating cardiovascular disease risk biomarkers including high-sensitivity C-reactive protein, angiotensin II, superoxide dismutase, interferon gamma, nitric oxide, and endothelial progenitor cells. Central systolic BP decreased by 12.22 mm Hg (95% CI, −1.88 to −22.57, P = 0.022) as did BP variability by 2.85 mm Hg (95% CI, −4.91 to −0.78, P = 0.008), in the exercise (n = 26) compared to the control group (n = 27). Interferon gamma −4.3 pg/mL (95%CI, −7.1 to −1.5, P = 0.003), angiotensin II −157.0 pg/mL (95%CI, −288.1 to −25.9, P = 0.020), and superoxide dismutase 0.4 pg/mL (95%CI, 0.1–0.6, P = 0.009) improved in the exercise compared to the control group. Carotid-femoral pulse wave velocity, heart rate variability, high-sensitivity C-reactive protein, nitric oxide, and endothelial progenitor cells were not different between groups (P > 0.05). In conclusion, a 12-week exercise training program improved central BP and BP variability, and cardiovascular disease risk biomarkers in patients with resistant hypertension. These markers are clinically relevant as they are associated with target organ damage and increased cardiovascular disease risk and mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  2. NCD-RisC NRFC. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.

    Article  Google Scholar 

  3. Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:e13–e115.

    CAS  PubMed  Google Scholar 

  4. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension. 2018;72:e53–e90.

    Article  CAS  PubMed  Google Scholar 

  5. Bakris GL, Townsend RR, Liu M, Cohen SA, D’Agostino R, Flack JM, et al. Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol. 2014;64:1071–8.

    Article  PubMed  Google Scholar 

  6. Agasthi P, Shipman J, Arsanjani R, Ashukem M, Girardo ME, Yerasi C, et al. Renal denervation for resistant hypertension in the contemporary era: a systematic review and meta-analysis. Sci Rep. 2019;9:6200.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N. Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  8. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125:1635–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sapoval M, Hale BC, Armstrong S, Da Deppo L, Hertz D, Briggs A. The burden of resistant hypertension in 5 European Countries. Value Health. 2013;16:A520–A1.

    Article  Google Scholar 

  10. Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension. 2016;67:183–90.

    Article  CAS  PubMed  Google Scholar 

  11. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  12. Cardoso CRL, Salles GF. Prognostic value of changes in aortic stiffness for cardiovascular outcomes and mortality in resistant hypertension: a cohort study. Hypertension. 2022;79:447–56.

    Article  CAS  PubMed  Google Scholar 

  13. Parati G, Ochoa JE, Bilo G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep. 2012;14:421–31.

    Article  PubMed  Google Scholar 

  14. Höcht C.Blood pressure variability: prognostic value and therapeutic implications. ISRN Hypertension. 2013;2013:1–16.

    Article  Google Scholar 

  15. Parati G, Ochoa JE, Salvi P, Lombardi C, Bilo G. Prognostic value of blood pressure variability and average blood pressure levels in patients with hypertension and diabetes. Diabetes Care. 2013;36:S312–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blumenthal JA, Hinderliter AL, Smith PJ, Mabe S, Watkins LL, Craighead L, et al. Effects of lifestyle modification on patients with resistant hypertension: results of the TRIUMPH randomized clinical trial. Circulation. 2021;144:1212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopes S, Mesquita-Bastos J, Garcia C, Bertoquini S, Ribau V, Teixeira M, et al. Effect of exercise training on ambulatory blood pressure among patients with resistant hypertension: a randomized clinical trial. JAMA Cardiol. 2021;6:1317–23.

    Article  PubMed  Google Scholar 

  18. Guimaraes GV, de Barros Cruz LG, Fernandes-Silva MM, Dorea EL, Bocchi EA. Heated water-based exercise training reduces 24-hour ambulatory blood pressure levels in resistant hypertensive patients: a randomized controlled trial (HEx trial). Int J Cardiol. 2014;172:434–41.

    Article  PubMed  Google Scholar 

  19. Dimeo F, Pagonas N, Seibert F, Arndt R, Zidek W, Westhoff TH. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension. 2012;60:653–8.

    Article  CAS  PubMed  Google Scholar 

  20. Seidel M, Pagonas N, Seibert FS, Bauer F, Rohn B, Vlatsas S, et al. The differential impact of aerobic and isometric handgrip exercise on blood pressure variability and central aortic blood pressure. J Hypertens. 2021;39:1269–73.

    Article  CAS  PubMed  Google Scholar 

  21. Caminiti G, Iellamo F, Mancuso A, Cerrito A, Montano M, Manzi V, et al. Effects of 12 weeks of aerobic versus combined aerobic plus resistance exercise training on short-term blood pressure variability in patients with hypertension. J Appl Physiol. 1985;130:1085–92. 2021

    Article  Google Scholar 

  22. Matias LAS, Mariano IM, Batista JP, De Souza TCF, Amaral AL, Dechichi JGC, et al. Acute and chronic effects of combined exercise on ambulatory blood pressure and its variability in hypertensive postmenopausal women. Chin J Physiol. 2020;63:227–34.

    Article  PubMed  Google Scholar 

  23. Pagonas N, Dimeo F, Bauer F, Seibert F, Kiziler F, Zidek W, et al. The impact of aerobic exercise on blood pressure variability. J Hum Hypertens. 2014;28:367–71.

    Article  CAS  PubMed  Google Scholar 

  24. Lopes S, Afreixo V, Teixeira M, Garcia C, Leitao C, Gouveia M, et al. Exercise training reduces arterial stiffness in adults with hypertension: a systematic review and meta-analysis. J Hypertens. 2021;39:214–22.

    Article  CAS  PubMed  Google Scholar 

  25. Calhoun JonesDW, Textor SC, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008;51:1403–19.

    Article  CAS  PubMed  Google Scholar 

  26. Morisky DE, Ang A, Krousel-Wood M, Ward HJ. Predictive validity of a medication adherence measure in an outpatient setting. J Clin Hypertens (Greenwich, Conn). 2008;10:348–54.

    Article  Google Scholar 

  27. Stergiou GS, Parati G, Vlachopoulos C, Achimastos A, Andreadis E, Asmar R, et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions - Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2016;34:1665–77.

    Article  CAS  PubMed  Google Scholar 

  28. Stea F, Bozec E, Millasseau S, Khettab H, Boutouyrie P, Laurent S. Comparison of the complior analyse device with sphygmocor and complior SP for pulse wave velocity and central pressure assessment. J Hypertens. 2014;32:873–80.

    Article  CAS  PubMed  Google Scholar 

  29. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445–8.

    Article  PubMed  Google Scholar 

  30. Electrophysiology TFotESoCtNA. Heart rate variability. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  31. Lopes S, Mesquita-Bastos J, Garcia C, Leitão C, Bertoquini S, Ribau V, et al. Physical activity is associated with lower arterial stiffness in patients with resistant hypertension. Heart Lung Circ. 2021;30:1762–8.

    Article  PubMed  Google Scholar 

  32. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81.

    Article  CAS  PubMed  Google Scholar 

  33. Lopes J, Teixeira M, Cavalcante S, Gouveia M, Duarte A, Ferreira M, et al. Reduced levels of circulating endothelial cells and endothelial progenitor cells in patients with heart failure with reduced ejection fraction. Arch Med Res. 2022;53:289–95.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed FW, Rider R, Glanville M, Narayanan K, Razvi S, Weaver JU. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc Diabetol. 2016;15:116.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Article  CAS  PubMed  Google Scholar 

  36. O’Rourke MF. Arterial aging: pathophysiological principles. Vasc Med. 2007;12:329–41.

    Article  PubMed  Google Scholar 

  37. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo JL Jr., Neutel J, Kerwin LJ, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  38. Smith PJ, Sherwood A, Hinderliter AL, Mabe S, Watkins LL, Craighead L, et al. Lifestyle modification and cognitive function among individuals with resistant hypertension: cognitive outcomes from the TRIUMPH trial. J Hypertens. 2022;40:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyaoka Y, Okada T, Tomiyama H, Morikawa A, Rinno S, Kato M, et al. Structural changes in renal arterioles are closely associated with central hemodynamic parameters in patients with renal disease. Hypertens Res. 2021;44:1113–21.

    Article  CAS  PubMed  Google Scholar 

  40. Nyberg M, Gliemann L, Hellsten Y. Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation. Scand J Med Sci Sports. 2015;25:60–73.

    Article  PubMed  Google Scholar 

  41. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203.

    Article  CAS  PubMed  Google Scholar 

  42. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636.

    Article  PubMed  Google Scholar 

  43. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, et al. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension. 2007;50:154–60.

    Article  CAS  PubMed  Google Scholar 

  44. Beck DT, Martin JS, Casey DP, Braith RW. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am J Hypertens. 2013;26:1093–102.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nualnim N, Parkhurst K, Dhindsa M, Tarumi T, Vavrek J, Tanaka H. Effects of swimming training on blood pressure and vascular function in adults >50 years of age. Am J Cardiol. 2012;109:1005–10.

    Article  PubMed  Google Scholar 

  46. Sharman JE, Boutouyrie P, Laurent S. Arterial (aortic) stiffness in patients with resistant hypertension: from assessment to treatment. Curr Hypertens Rep. 2017;19:2.

    Article  PubMed  Google Scholar 

  47. Barbaro NR, Fontana V, Modolo R, De Faria AP, Sabbatini AR, Fonseca FH, et al. Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers. Blood Press. 2015;24:7–13.

    Article  CAS  PubMed  Google Scholar 

  48. Manousopoulos K, Koroboki E, Barlas G, Lykka A, Tsoutsoura N, Flessa K, et al. Association of home and ambulatory blood pressure variability with left ventricular mass index in chronic kidney disease patients. Hypertens Res. 2021;44:55–62.

    Article  PubMed  Google Scholar 

  49. Hsu PF, Cheng HM, Wu CH, Sung SH, Chuang SY, Lakatta EG, et al. High short-term blood pressure variability predicts long-term cardiovascular mortality in untreated hypertensives but not in normotensives. Am J Hypertens. 2016;29:806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cuspidi C, Carugo S, Tadic M. Blood pressure variability and target organ damage regression in hypertension. J Clin Hypertens (Greenwich). 2021;23:1159–61.

    Article  PubMed  Google Scholar 

  51. Thompson G, Davison GW, Crawford J, Hughes CM. Exercise and inflammation in coronary artery disease: a systematic review and meta-analysis of randomised trials. J Sports Sci. 2020;38:814–26.

    Article  PubMed  Google Scholar 

  52. de Sousa CV, Sales MM, Rosa TS, Lewis JE, de Andrade RV, Simoes HG. The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Med. 2017;47:277–93.

    Article  PubMed  Google Scholar 

  53. Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4:e002014.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aghaei Bahmanbeglou N, Ebrahim K, Maleki M, Nikpajouh A, Ahmadizad S. Short-duration high-intensity interval exercise training is more effective than long duration for blood pressure and arterial stiffness but not for inflammatory markers and lipid profiles in patients with stage 1 hypertension. J Cardiopulm Rehab Prev. 2019;39:50–5.

    Article  Google Scholar 

  55. Ahn N, Kim K. Can active aerobic exercise reduce the risk of cardiovascular disease in prehypertensive elderly women by improving hdl cholesterol and inflammatory markers? Int J Environ Res Public Health. 2020;17:5910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Korsager Larsen M, Matchkov VV. Hypertension and physical exercise: The role of oxidative stress. Med (Kaunas). 2016;52:19–27.

    Google Scholar 

  57. Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100:1194–202.

    Article  CAS  PubMed  Google Scholar 

  58. Beck DT, Casey DP, Martin JS, Emerson BD, Braith RW. Exercise training improves endothelial function in young prehypertensives. Exp Biol Med (Maywood). 2013;238:433–41.

    Article  PubMed  Google Scholar 

  59. Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97:495–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ye Y, Lin H, Wan M, Qiu P, Xia R, He J, et al. The effects of aerobic exercise on oxidative stress in older adults: a systematic review and meta-analysis. Front Physiol. 2021;12:701151.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Boeno FP, Ramis TR, Munhoz SV, Farinha JB, Moritz CEJ, Leal-Menezes R, et al. Effect of aerobic and resistance exercise training on inflammation, endothelial function and ambulatory blood pressure in middle-aged hypertensive patients. J Hypertens. 2020;38:2501–9.

    Article  CAS  PubMed  Google Scholar 

  62. Waldman BM, Augustyniak RA, Chen H, Rossi NF. Effects of voluntary exercise on blood pressure, angiotensin II, aldosterone, and renal function in two-kidney, one-clip hypertensive rats. Integr Blood Press Control. 2017;10:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peng WW, Hong L, Liu GY, Lin C, Zhao XL, Wang SZ, et al. Prehypertension exercise training attenuates hypertension and cardiac hypertrophy accompanied by temporal changes in the levels of angiotensin II and angiotensin (1-7). Hypertens Res. 2019;42:1745–56.

    Article  CAS  PubMed  Google Scholar 

  64. Collier SR, Kanaley JA, Carhart R Jr., Frechette V, Tobin MM, Bennett N, et al. Cardiac autonomic function and baroreflex changes following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension. Acta Physiol (Oxf). 2009;195:339–48.

    Article  CAS  PubMed  Google Scholar 

  65. Masroor S, Bhati P, Verma S, Khan M, Hussain ME. Heart rate variability following combined aerobic and resistance training in sedentary hypertensive women: a randomised control trial. Indian Heart J. 2018;70:S28–S35.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cornelissen VA, Verheyden B, Aubert AE, Fagard RH. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J Hum Hypertens. 2010;24:175–82.

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan AN, Lachman ME. Behavior change with fitness technology in sedentary adults: a review of the evidence for increasing physical activity. Front Public Health. 2016;4:289.

    PubMed  Google Scholar 

Download references

Acknowledgements

Cátia Leitão is grateful to the Portuguese Foundation for Science and Technology (FCT) for the research contract CEECIND/00154/2020 and the projects UIDB/50025/2020 & UIDP/50025/2020, financed by national funds through the FCT/MEC. Institute of Biomedicine (iBiMED; reference No. UID/BIM/04501/2020), Research Center in Physical Activity, Health and Leisure (CIAFEL; reference No. UID/DTP/00617/ 2020), and Research Center in Sports Sciences, Health and Human Development (CIDESD; reference No. UID/DTP/ 04045/2020) are research units supported by the Portuguese FCT.

Funding

Funding

This work was funded by the European Union through the European Regional Development Fund Operational Competitiveness Factors Program (COMPETE) and by the Portuguese government through the Foundation for Science and Technology (grants P2020-PTDC/DTP-DES/1725/2014 and POCI-01-0145-FEDER-016710). Susana Lopes was awarded with a Portuguese Foundation for Science and Technology PhD grant (grant SFRH/ BD/129454/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Lopes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, S., Mesquita-Bastos, J., Garcia, C. et al. Aerobic exercise improves central blood pressure and blood pressure variability among patients with resistant hypertension: results of the EnRicH trial. Hypertens Res 46, 1547–1557 (2023). https://doi.org/10.1038/s41440-023-01229-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01229-7

Keywords

This article is cited by

Search

Quick links