Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Mini review series: Current topic in Hypertension
  • Published:

Short- to long-term blood pressure variability: Current evidence and new evaluations

Abstract

Increased blood pressure (BP) variability and the BP surge have been reported to be associated with increased cardiovascular risk independently of BP levels and can also be a trigger of cardiovascular events. There are multiple types of BP variation: beat-to-beat variations related to breathing and the autonomic nervous system, diurnal BP variation and nocturnal dipping related to sleep and physical activity over a 24-hr period, day-to-day BP variability with anomalous readings within a several-day period, visit-to-visit BP variability between outpatient visits, and seasonal variations. BP variability is also associated with the progression to hypertension from prehypertension and the progression of chronic kidney disease and cognitive impairments. Our research group proposed the “resonance hypothesis of blood pressure surge” as a new etiological hypothesis of BP variability and surges; i.e., the concept that when the time phases of surges and hypertension-inducing environmental influences coincide, resonance occurs and is amplified into a larger “dynamic surge” that triggers the onset of cardiovascular disease. New devices to assess BP variability as well as new therapeutic interventions to reduce BP variability are being developed. Although there are still issues to be addressed (including measurement accuracy), cuffless devices and information and communication technology (ICT)-based BP monitoring devices have been developed and validated. These new devices will be useful for the individualized optimal management of BP. However, evidence regarding the usefulness of therapeutic interventions to control BP variability is still lacking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 2010;375:895–905. https://doi.org/10.1016/s0140-6736(10)60308-x

    Article  PubMed  Google Scholar 

  2. Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: The Finn-Home Study. Hypertension. 2012;59:212–8. https://doi.org/10.1161/hypertensionaha.111.178657

    Article  CAS  PubMed  Google Scholar 

  3. Asayama K, Kikuya M, Schutte R, Thijs L, Hosaka M, Satoh M, et al. Home blood pressure variability as cardiovascular risk factor in the population of Ohasama. Hypertension. 2013;61:61–69. https://doi.org/10.1161/hypertensionaha.111.00138

    Article  CAS  PubMed  Google Scholar 

  4. Hoshide S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-day variability of home blood pressure and incident cardiovascular disease in clinical practice: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Hypertension. 2018;71:177–84. https://doi.org/10.1161/hypertensionaha.117.10385

    Article  CAS  PubMed  Google Scholar 

  5. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis: Practitioner-based nationwide JAMP study. Circulation. 2020;142:1810–20. https://doi.org/10.1161/circulationaha.120.049730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Narita K, Hoshide S, Kario K.Difference between morning and evening home blood pressure and cardiovascular events: The J-HOP Study (Japan Morning Surge-Home Blood Pressure.Hypertens Res.2021;44:1597–605. https://doi.org/10.1038/s41440-021-00686-2

    Article  PubMed  Google Scholar 

  7. Fujiwara T, Hoshide S, Kanegae H, Kario K. Clinical Impact of the maximum mean value of home blood pressure on cardiovascular outcomes: A novel indicator of home blood pressure variability. Hypertension. 2021;78:840–50. https://doi.org/10.1161/hypertensionaha.121.17362

    Article  CAS  PubMed  Google Scholar 

  8. Narita K, Hoshide S, Kario K. Seasonal variation in day-by-day home blood pressure variability and effect on cardiovascular disease incidence. Hypertension. 2022;79:2062–70. https://doi.org/10.1161/HYPERTENSIONAHA.122.19494

    Article  CAS  PubMed  Google Scholar 

  9. Kario K, Chirinos JA, Townsend RR, Weber MA, Scuteri A, Avolio A, et al. Systemic hemodynamic atherothrombotic syndrome (SHATS) – Coupling vascular disease and blood pressure variability: Proposed concept from pulse of Asia. Prog Cardiovasc Dis. 2020;63:22–32. https://doi.org/10.1016/j.pcad.2019.11.002

    Article  PubMed  Google Scholar 

  10. Mogi M, Maruhashi T, Higashi Y, Masuda T, Nagata D, Nagai M, et al. Update on hypertension research in 2021. Hypertens Res. 2022;45:1276–97. https://doi.org/10.1038/s41440-022-00967-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Narita K, Hoshide S, Kario K. The role of blood pressure management in stroke prevention: Current status and future prospects. Expert Rev Cardiovasc Ther. 2022;20:829–38. https://doi.org/10.1080/14779072.2022.2137490

    Article  CAS  PubMed  Google Scholar 

  12. Kario K, Hoshide S, Chia YC, Buranakitjaroen P, Siddique S, Shin J, et al. Guidance on ambulatory blood pressure monitoring: A statement from the HOPE Asia Network. J Clin Hypertens (Greenwich). 2021;23:411–21. https://doi.org/10.1111/jch.14128

    Article  PubMed  Google Scholar 

  13. Bakkar NZ, El-Yazbi AF, Zouein FA, Fares SA. Beat-to-beat blood pressure variability: An early predictor of disease and cardiovascular risk. J Hypertens. 2021;39:830–45. https://doi.org/10.1097/hjh.0000000000002733

    Article  CAS  PubMed  Google Scholar 

  14. Webb AJS, Mazzucco S, Li L, Rothwell PM. Prognostic significance of blood pressure variability on beat-to-beat monitoring after transient ischemic attack and stroke. Stroke. 2018;49:62–67. https://doi.org/10.1161/strokeaha.117.019107

    Article  PubMed  Google Scholar 

  15. Webb AJS, Lawson A, Wartolowska K, Mazzucco S, Rothwell PM. Progression of beat-to-beat blood pressure variability despite best medical management. Hypertension. 2021;77:193–201. https://doi.org/10.1161/hypertensionaha.120.16290

    Article  CAS  PubMed  Google Scholar 

  16. Kishi T. Baroreflex failure and beat-to-beat blood pressure variation. Hypertens Res. 2018;41:547–52. https://doi.org/10.1038/s41440-018-0056-y

    Article  PubMed  Google Scholar 

  17. Kinoshita H, Saku K, Mano J, Mannoji H, Kanaya S, Sunagawa K. Very short-term beat-by-beat blood pressure variability in the supine position at rest correlates well with the nocturnal blood pressure variability assessed by ambulatory blood pressure monitoring. Hypertens Res. 2022;45:1008–17. https://doi.org/10.1038/s41440-022-00911-6

    Article  PubMed  Google Scholar 

  18. Hoshide S, Yoshihisa A, Tsuchida F, Mizuno H, Teragawa H, Kasai T, et al. Pulse transit time-estimated blood pressure: A comparison of beat-to-beat and intermittent measurement. Hypertens Res. 2022;45:1001–7. https://doi.org/10.1038/s41440-022-00899-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Misaka T, Niimura Y, Yoshihisa A, Wada K, Kimishima Y, Yokokawa T, et al. Clinical impact of sleep-disordered breathing on very short-term blood pressure variability determined by pulse transit time. J Hypertens. 2020;38:1703–11. https://doi.org/10.1097/hjh.0000000000002445

    Article  CAS  PubMed  Google Scholar 

  20. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20:2183–9. https://doi.org/10.1097/00004872-200211000-00017

    Article  CAS  PubMed  Google Scholar 

  21. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: A prospective study. Circulation. 2003;107:1401–6. https://doi.org/10.1161/01.cir.0000056521.67546.aa

    Article  PubMed  Google Scholar 

  22. Kario K, Wang JG, Chia YC, Wang TD, Li Y, Siddique S, et al. The HOPE Asia network 2022 up-date consensus statement on morning hypertension management. J Clin Hypertens (Greenwich). 2022;24:1112–20. https://doi.org/10.1111/jch.14555

    Article  PubMed  Google Scholar 

  23. Hoshide S, Kario K. Morning surge in blood pressure and stroke events in a large modern ambulatory blood pressure monitoring cohort: Results of the JAMP study. Hypertension. 2021;78:894–6. https://doi.org/10.1161/hypertensionaha.121.17547

    Article  CAS  PubMed  Google Scholar 

  24. Mena LJ, Felix VG, Melgarejo JD, Maestre GE. 24-h blood pressure variability assessed by average real variability: A systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e006895 https://doi.org/10.1161/jaha.117.006895

    Article  PubMed  PubMed Central  Google Scholar 

  25. Özkan G, Ulusoy Ş, Arıcı M, Derici Ü, Akpolat T, Şengül Ş, et al. Does blood pressure variability affect hypertension development in prehypertensive patients? Am J Hypertens. 2022;35:73–78. https://doi.org/10.1093/ajh/hpab125

    Article  PubMed  Google Scholar 

  26. Hung MH, Huang CC, Chung CM, Chen JW. 24-h ambulatory blood pressure variability and hypertensive nephropathy in Han Chinese hypertensive patients. J Clin Hypertens (Greenwich). 2021;23:281–8. https://doi.org/10.1111/jch.14108

    Article  PubMed  Google Scholar 

  27. Hoshide S, Tomitani N, Kario K. Maximum ambulatory daytime blood pressure and risk of stroke in individuals with higher ambulatory arterial stiffness index: The JAMP study. Hypertens Res. 2022;46:84–90. https://doi.org/10.1038/s41440-022-01048-2

    Article  PubMed  Google Scholar 

  28. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Hypertension. 2018;71:e13–e115. https://doi.org/10.1161/hyp.0000000000000065

    Article  CAS  PubMed  Google Scholar 

  29. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104. https://doi.org/10.1093/eurheartj/ehy339

    Article  PubMed  Google Scholar 

  30. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese society of hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481. https://doi.org/10.1038/s41440-019-0284-9

    Article  PubMed  Google Scholar 

  31. Kikuya M, Ohkubo T, Metoki H, Asayama K, Hara A, Obara T, et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: The Ohasama study. Hypertension. 2008;52:1045–50. https://doi.org/10.1161/hypertensionaha.107.104620

    Article  CAS  PubMed  Google Scholar 

  32. Kubozono T, Akasaki Y, Kawasoe S, Ojima S, Kawabata T, Makizako H, et al. The relationship between day-to-day variability in home blood pressure measurement and multiple organ function. Hypertens Res. 2022;45:474–82. https://doi.org/10.1038/s41440-021-00818-8

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki T, Sakata S, Oishi E, Furuta Y, Honda T, Hata J, et al. Day-to-day blood pressure variability and risk of incident chronic kidney disease in a general Japanese population. J Am Heart Assoc. 2022;11:e027173 https://doi.org/10.1161/jaha.122.027173

    Article  PubMed  PubMed Central  Google Scholar 

  34. Godai K, Kabayama M, Gondo Y, Yasumoto S, Sekiguchi T, Noma T, et al. Day-to-day blood pressure variability is associated with lower cognitive performance among the Japanese community-dwelling oldest-old population: The SONIC study. Hypertens Res. 2020;43:404–11. https://doi.org/10.1038/s41440-019-0377-5

    Article  PubMed  Google Scholar 

  35. Nwabuo CC, Yano Y, Moreira HT, Appiah D, Vasconcellos HD, Aghaji QN, et al. Long-term blood pressure variability in young adulthood and coronary artery calcium and carotid intima-media thickness in midlife: The CARDIA Study. Hypertension. 2020;76:404–9. https://doi.org/10.1161/hypertensionaha.120.15394

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhao P, Chu C, Du MF, Zhang XY, Zou T, et al. Associations of long-term visit-to-visit blood pressure variability with subclinical kidney damage and albuminuria in adulthood: A 30-year prospective cohort study. Hypertension. 2022;79:1247–56. https://doi.org/10.1161/hypertensionaha.121.18658

    Article  CAS  PubMed  Google Scholar 

  37. Sible IJ, Nation DA. Visit-to-visit blood pressure variability and longitudinal tau accumulation in older adults. Hypertension. 2022;79:629–37. https://doi.org/10.1161/hypertensionaha.121.18479

    Article  CAS  PubMed  Google Scholar 

  38. Parati G, Omboni S, Rizzoni D, Agabiti-Rosei E, Mancia G. The smoothness index: A new, reproducible and clinically relevant measure of the homogeneity of the blood pressure reduction with treatment for hypertension. J Hypertens. 1998;16:1685–91. https://doi.org/10.1097/00004872-199816110-00016

    Article  CAS  PubMed  Google Scholar 

  39. Parati G, Dolan E, Ley L, Schumacher H. Impact of antihypertensive combination and monotreatments on blood pressure variability: Assessment by old and new indices. Data from a large ambulatory blood pressure monitoring database. J Hypertens. 2014;32:1326–33. https://doi.org/10.1097/hjh.0000000000000169

    Article  CAS  PubMed  Google Scholar 

  40. Ojji DB, Cornelius V, Partington G, Francis V, Pandie S, Smythe W, et al. Effect of 3, 2-drug combinations of antihypertensive therapies on blood pressure variability in black African patients: Secondary analyses of the CREOLE Trial. Hypertension. 2022;79:2593–2600. https://doi.org/10.1161/hypertensionaha.121.18333

    Article  CAS  PubMed  Google Scholar 

  41. Kollias A, Stergiou GS, Kyriakoulis KG, Bilo G, Parati G. Treating Visit-to-visit blood pressure variability to improve prognosis: Is amlodipine the drug of choice? Hypertension. 2017;70:862–6. https://doi.org/10.1161/hypertensionaha.117.10087

    Article  CAS  PubMed  Google Scholar 

  42. Mackenzie IS, Rogers A, Poulter NR, Williams B, Brown MJ, Webb DJ, et al. Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): A prospective, randomised, open-label, blinded-endpoint clinical trial. Lancet. 2022;400:1417–25. https://doi.org/10.1016/s0140-6736(22)01786-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kario K, Hoshide S, Shimizu M, Yano Y, Eguchi K, Ishikawa J, et al. Effect of dosing time of angiotensin II receptor blockade titrated by self-measured blood pressure recordings on cardiorenal protection in hypertensives: The Japan Morning Surge-Target Organ Protection (J-TOP) study. J Hypertens. 2010;28:1574–83. https://doi.org/10.1097/HJH.0b013e3283395267

    Article  CAS  PubMed  Google Scholar 

  44. Stergiou GS, Palatini P, Modesti PA, Asayama K, Asmar R, Bilo G, et al. Seasonal variation in blood pressure: Evidence, consensus and recommendations for clinical practice. Consensus statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2020;38:1235–43. https://doi.org/10.1097/hjh.0000000000002341

    Article  CAS  PubMed  Google Scholar 

  45. Narita K, Hoshide S, Kario K. Seasonal variation in blood pressure: Current evidence and recommendations for hypertension management. Hypertens Res. 2021;44:1363–72. https://doi.org/10.1038/s41440-021-00732-z

    Article  PubMed  Google Scholar 

  46. Kollias A, Kyriakoulis KG, Stambolliu E, Ntineri A, Anagnostopoulos I, Stergiou GS. Seasonal blood pressure variation assessed by different measurement methods: Systematic review and meta-analysis. J Hypertens. 2020;38:791–8. https://doi.org/10.1097/hjh.0000000000002355

    Article  CAS  PubMed  Google Scholar 

  47. Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, et al. Nighttime blood pressure measured by home blood pressure monitoring as an independent predictor of cardiovascular events in general practice. Hypertension. 2019;73:1240–8. https://doi.org/10.1161/hypertensionaha.118.12740

    Article  CAS  PubMed  Google Scholar 

  48. Narita K, Hoshide S, Kario K. Nighttime home blood pressure is associated with the cardiovascular disease events risk in treatment-resistant hypertension. Hypertension. 2022;79:e18–e20. https://doi.org/10.1161/HYPERTENSIONAHA.121.18534

    Article  CAS  PubMed  Google Scholar 

  49. Narita K, Hoshide S, Kanegae H, Kario K. Seasonal variation in masked nocturnal hypertension: The J-HOP Nocturnal Blood Pressure Study. Am J Hypertens. 2021;34:609–18. https://doi.org/10.1093/ajh/hpaa193

    Article  PubMed  Google Scholar 

  50. Hanazawa T, Asayama K, Watabe D, Tanabe A, Satoh M, Inoue R, et al. Association between amplitude of seasonal variation in self-measured home blood pressure and cardiovascular outcomes: HOMED-BP (Hypertension Objective Treatment Based on Measurement By Electrical Devices of Blood Pressure) Study. J Am Heart Assoc. 2018;7:e008509 https://doi.org/10.1161/jaha.117.008509

    Article  PubMed Central  Google Scholar 

  51. Narita K, Hoshide S, Fujiwara T, Kanegae H, Kario K. Seasonal variation of home blood pressure and its association with target organ damage: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Am J Hypertens. 2020;33:620–8. https://doi.org/10.1093/ajh/hpaa027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nishizawa M, Fujiwara T, Hoshide S, Sato K, Okawara Y, Tomitani N, et al. Winter morning surge in blood pressure after the Great East Japan Earthquake. J Clin Hypertens. 2019;21:208–16. https://doi.org/10.1111/jch.13463

    Article  Google Scholar 

  53. Umishio W, Ikaga T, Kario K, Fujino Y, Hoshi T, Ando S, et al. Cross-sectional analysis of the relationship between home blood pressure and indoor temperature in winter: A nationwide Smart Wellness Housing survey in Japan. Hypertension. 2019;74:756–66. https://doi.org/10.1161/hypertensionaha.119.12914

    Article  CAS  PubMed  Google Scholar 

  54. Ishiyama Y, Hoshide S, Kanegae H, Kario K. Increased arterial stiffness amplifies the association between home blood pressure variability and cardiac overload: The J-HOP Study. Hypertension. 2020;75:1600–6. https://doi.org/10.1161/hypertensionaha.119.14246

    Article  CAS  PubMed  Google Scholar 

  55. Kario K, Tomitani N, Kanegae H, Yasui N, Nishizawa M, Fujiwara T, et al. Development of a new ICT-based multisensor blood pressure monitoring system for use in hemodynamic biomarker-initiated anticipation medicine for cardiovascular disease: The National IMPACT Program Project. Prog Cardiovasc Dis. 2017;60:435–49. https://doi.org/10.1016/j.pcad.2017.10.002

    Article  PubMed  Google Scholar 

  56. Kario K, Hoshide S, Saito K, Sato K, Hamasaki H, Suwa H, et al. Validation of the TM-2441 ambulatory blood pressure measurement device according to the ISO 81060-2: 2013 standard. Blood Press Monit. 2019;24:38–41. https://doi.org/10.1097/MBP.0000000000000357

    Article  PubMed  Google Scholar 

  57. Narita K, Hoshide S, Kario K. Changes in blood pressure reactivity against physical activity evaluated by multisensor-ABPM in heart failure patients. JACC: Asia. 2022;2:387–9. https://doi.org/10.1016/j.jacasi.2022.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kario K. Management of hypertension in the digital era: Small wearable monitoring devices for remote blood pressure monitoring. Hypertension. 2020;76:640–50. https://doi.org/10.1161/hypertensionaha.120.14742

    Article  CAS  PubMed  Google Scholar 

  59. Kario K, Nomura A, Harada N, Okura A, Nakagawa K, Tanigawa T, et al. Efficacy of a digital therapeutics system in the management of essential hypertension: The HERB-DH1 pivotal trial. Eur Heart J. 2021;42:4111–22. https://doi.org/10.1093/eurheartj/ehab559

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schutte AE, Srinivasapura Venkateshmurthy N, Mohan S, Prabhakaran D. Hypertension in low- and middle-income countries. Circ Res. 2021;128:808–26. https://doi.org/10.1161/circresaha.120.318729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: Classic and novel measurement techniques. Nat Rev Cardiol. 2022;19:643–54. https://doi.org/10.1038/s41569-022-00690-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Narita.

Ethics declarations

Conflict of interest

K. Kario has received research funding from Omron Healthcare Co., Fukuda Denshi, and A&D Co. The other authors report no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narita, K., Hoshide, S. & Kario, K. Short- to long-term blood pressure variability: Current evidence and new evaluations. Hypertens Res 46, 950–958 (2023). https://doi.org/10.1038/s41440-023-01199-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01199-w

Keywords

This article is cited by

Search

Quick links