Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – ISH2022 KYOTO
  • Published:

The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats

Abstract

Salt-sensitive hypertension is associated with poor clinical outcomes. The epithelial sodium channel (ENaC) in the kidney plays pivotal roles in sodium reabsorption and blood pressure regulation, in which its γ subunit is activated by extracellular serine proteases. In proteinuric nephropathies, plasmin filtered through injured glomeruli reportedly activates γENaC in the distal nephron and causes podocyte injury. We previously reported that Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet developed hypertension and proteinuria along with γENaC activation and that a synthetic serine protease inhibitor, camostat mesilate, mitigated these changes. However, the role of plasmin in DS rats remained unclear. In this study, we evaluated the relationship between plasmin and hypertension as well as podocyte injury and the effects of plasmin inhibitors in DS rats. Five-week-old DS rats were divided into normal-salt diet, HS diet, and HS+plasmin inhibitor (either tranexamic acid [TA] or synthetic plasmin inhibitor YO-2) groups. After blood pressure measurement and 24 h urine collection over 5 weeks, rats were sacrificed for biochemical analyses. The HS group displayed severe hypertension and proteinuria together with activation of plasmin in urine and γENaC in the kidney, which was significantly attenuated by YO-2 but not TA. YO-2 inhibited the attachment of plasmin(ogen) to podocytes and alleviated podocyte injury by inhibiting apoptosis and inflammatory/profibrotic cytokines. YO-2 also suppressed upregulation of protease-activated receptor-1 and phosphorylated ERK1/2. These results indicate an important role of plasmin in the development of salt-sensitive hypertension and related podocyte injury, suggesting plasmin inhibition as a potential therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997;350:1734–7.

    Article  CAS  Google Scholar 

  2. Marunaka Y. Hormonal and osmotic regulation of NaCl transport in renal distal nephron epithelium. Jpn J Physiol. 1997;47:499–511.

    Article  CAS  Google Scholar 

  3. Mutchler SM, Kirabo A, Kleyman TR. Epithelial Sodium Channel and Salt-Sensitive Hypertension. Hypertension. 2021;77:759–67.

    Article  CAS  Google Scholar 

  4. Oh YS, Warnock DG. Disorders of the epithelial Na(+) channel in Liddle’s syndrome and autosomal recessive pseudohypoaldosteronism type 1. Exp Nephrol. 2000;8:320–5.

    Article  CAS  Google Scholar 

  5. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature. 1997;389:607–10.

    Article  CAS  Google Scholar 

  6. Anand D, Hummler E, Rickman OJ. ENaC activation by proteases. Acta Physiol. 2022;235:e13811.

    Article  CAS  Google Scholar 

  7. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 1999;104:R19–23.

    Article  CAS  Google Scholar 

  8. Kitamura K, Tomita K. Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension. Clin Exp Nephrol. 2012;16:44–48.

    Article  CAS  Google Scholar 

  9. Olivieri O, Chiecchi L, Pizzolo F, Castagna A, Raffaelli R, Gunasekaran M, et al. Urinary prostasin in normotensive individuals: correlation with the aldosterone to renin ratio and urinary sodium. Hypertens Res. 2013;36:528–33.

    Article  CAS  Google Scholar 

  10. Uchimura K, Kakizoe Y, Onoue T, Hayata M, Morinaga J, Yamazoe R, et al. In vivo contribution of serine proteases to the proteolytic activation of gammaENaC in aldosterone-infused rats. Am J Physiol Ren Physiol. 2012;303:F939–943.

    Article  CAS  Google Scholar 

  11. Artunc F, Wörn M, Schork A, Bohnert BN. Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol. 2019;225:e13249.

    Article  Google Scholar 

  12. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009;20:299–310.

    Article  CAS  Google Scholar 

  13. Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP, Kleyman TR. Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J Biol Chem. 2008;283:36586–91.

    Article  CAS  Google Scholar 

  14. Kakizoe Y, Kitamura K, Ko T, Wakida N, Maekawa A, Miyoshi T, et al. Aberrant ENaC activation in Dahl salt-sensitive rats. J Hypertens. 2009;27:1679–89.

    Article  CAS  Google Scholar 

  15. Maekawa A, Kakizoe Y, Miyoshi T, Wakida N, Ko T, Shiraishi N, et al. Camostat mesilate inhibits prostasin activity and reduces blood pressure and renal injury in salt-sensitive hypertension. J Hypertens. 2009;27:181–9.

    Article  CAS  Google Scholar 

  16. Raij L, Tian R, Wong JS, He JC, Campbell KN. Podocyte injury: the role of proteinuria, urinary plasminogen, and oxidative stress. Am J Physiol Ren Physiol. 2016;311:F1308–F1317.

    Article  CAS  Google Scholar 

  17. Egerman MA, Wong JS, Runxia T, Mosoyan G, Chauhan K, Reyes-Bahamonde J, et al. Plasminogenuria is associated with podocyte injury, edema, and kidney dysfunction in incident glomerular disease. FASEB J. 2020;34:16191–204.

    Article  CAS  Google Scholar 

  18. Kakizoe Y, Miyasato Y, Onoue T, Nakagawa T, Hayata M, Uchimura K, et al. A serine protease inhibitor attenuates aldosterone-induced kidney injuries via the suppression of plasmin activity. J Pharm Sci. 2016;132:145–53.

    Article  CAS  Google Scholar 

  19. Mizumoto T, Kakizoe Y, Nakagawa T, Iwata Y, Miyasato Y, Uchimura K, et al. A serine protease inhibitor camostat mesilate prevents podocyte apoptosis and attenuates podocyte injury in metabolic syndrome model rats. J Pharm Sci. 2021;146:192–9.

    Article  CAS  Google Scholar 

  20. Tamura Y, Hirado M, Okamura K, Minato Y, Fujii S. Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r-, and C1 esterase. Biochim Biophys Acta. 1977;484:417–22.

    Article  CAS  Google Scholar 

  21. Nakagawa T, Kakizoe Y, Iwata Y, Miyasato Y, Mizumoto T, Adachi M, et al. Doxycycline attenuates cisplatin-induced acute kidney injury through pleiotropic effects. Am J Physiol Ren Physiol. 2018;315:F1347–f1357.

    Article  CAS  Google Scholar 

  22. Zhang G, Kernan KA, Collins SJ, Cai X, López-Guisa JM, Degen JL, et al. Plasmin(ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals. J Am Soc Nephrol. 2007;18:846–59.

    Article  CAS  Google Scholar 

  23. Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K, et al. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J Am Soc Nephrol. 2017;28:2618–30.

    Article  CAS  Google Scholar 

  24. Law RHP, Wu G, Leung EWW, Hidaka K, Quek AJ, Caradoc-Davies TT, et al. X-ray crystal structure of plasmin with tranexamic acid-derived active site inhibitors. Blood Adv. 2017;1:766–71.

    Article  CAS  Google Scholar 

  25. Wellington K, Wagstaff AJ. Tranexamic acid: a review of its use in the management of menorrhagia. Drugs. 2003;63:1417–33.

    Article  CAS  Google Scholar 

  26. Okada Y, Tsuda Y, Tada M, Wanaka K, Okamoto U, Hijikata-Okunomiya A, et al. Development of potent and selective plasmin and plasma kallikrein inhibitors and studies on the structure-activity relationship. Chem Pharm Bull. 2000;48:1964–72.

    Article  CAS  Google Scholar 

  27. Bohnert BN, Daiminger S, Wörn M, Sure F, Staudner T, Ilyaskin AV, et al. Urokinase-type plasminogen activator (uPA) is not essential for epithelial sodium channel (ENaC)-mediated sodium retention in experimental nephrotic syndrome. Acta Physiol. 2019;227:e13286.

    Article  CAS  Google Scholar 

  28. Xiao M, Bohnert BN, Aypek H, Kretz O, Grahammer F, Aukschun U, et al. Plasminogen deficiency does not prevent sodium retention in a genetic mouse model of experimental nephrotic syndrome. Acta Physiol. 2021;231:e13512.

    Article  CAS  Google Scholar 

  29. Hinrichs GR, Weyer K, Friis UG, Svenningsen P, Lund IK, Nielsen R, et al. Urokinase-type plasminogen activator contributes to amiloride-sensitive sodium retention in nephrotic range glomerular proteinuria in mice. Acta Physiol. 2019;227:e13362.

    Article  CAS  Google Scholar 

  30. Andersen H, Hansen MH, Buhl KB, Stæhr M, Friis UG, Enggaard C, et al. Plasminogen Deficiency and Amiloride Mitigate Angiotensin II-Induced Hypertension in Type 1 Diabetic Mice Suggesting Effects Through the Epithelial Sodium Channel. J Am Heart Assoc. 2020;9:e016387.

    Article  CAS  Google Scholar 

  31. Andersen H, Friis UG, Hansen PB, Svenningsen P, Henriksen JE, Jensen BL. Diabetic nephropathy is associated with increased urine excretion of proteases plasmin, prostasin and urokinase and activation of amiloride-sensitive current in collecting duct cells. Nephrol Dial Transpl. 2015;30:781–9.

    Article  CAS  Google Scholar 

  32. Andersen RF, Buhl KB, Jensen BL, Svenningsen P, Friis UG, Jespersen B, et al. Remission of nephrotic syndrome diminishes urinary plasmin content and abolishes activation of ENaC. Pediatr Nephrol. 2013;28:1227–34.

    Article  Google Scholar 

  33. Buhl KB, Friis UG, Svenningsen P, Gulaveerasingam A, Ovesen P, Frederiksen-Møller B, et al. Urinary plasmin activates collecting duct ENaC current in preeclampsia. Hypertension. 2012;60:1346–51.

    Article  CAS  Google Scholar 

  34. Buhl KB, Oxlund CS, Friis UG, Svenningsen P, Bistrup C, Jacobsen IA, et al. Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro. J Hypertens. 2014;32:1672–7.

    Article  CAS  Google Scholar 

  35. Chen JL, Wang L, Yao XM, Zang YJ, Wang Y, Li ZJ, et al. Association of Urinary Plasminogen-Plasmin with Edema and Epithelial Sodium Channel Activation in Patients with Nephrotic Syndrome. Am J Nephrol. 2019;50:92–104.

    Article  CAS  Google Scholar 

  36. Hinrichs GR, Mortensen LA, Jensen BL, Bistrup C. Amiloride resolves resistant edema and hypertension in a patient with nephrotic syndrome; a case report. Physiol Rep. 2018;6:e13743.

    Article  Google Scholar 

  37. Oxlund CS, Buhl KB, Jacobsen IA, Hansen MR, Gram J, Henriksen JE, et al. Amiloride lowers blood pressure and attenuates urine plasminogen activation in patients with treatment-resistant hypertension. J Am Soc Hypertens. 2014;8:872–81.

    Article  CAS  Google Scholar 

  38. Unruh ML, Pankratz VS, Demko JE, Ray EC, Hughey RP, Kleyman TR. Trial of Amiloride in Type 2 Diabetes with Proteinuria. Kidney Int Rep. 2017;2:893–904.

    Article  Google Scholar 

  39. Hayata M, Kakizoe Y, Uchimura K, Morinaga J, Yamazoe R, Mizumoto T, et al. Effect of a serine protease inhibitor on the progression of chronic renal failure. Am J Physiol Ren Physiol. 2012;303:F1126–1135.

    Article  CAS  Google Scholar 

  40. Morinaga J, Kakizoe Y, Miyoshi T, Onoue T, Ueda M, Mizumoto T, et al. The antifibrotic effect of a serine protease inhibitor in the kidney. Am J Physiol Ren Physiol. 2013;305:F173–181.

    Article  CAS  Google Scholar 

  41. Narita Y, Ueda M, Uchimura K, Kakizoe Y, Miyasato Y, Mizumoto T, et al. Combination therapy with renin-angiotensin-aldosterone system inhibitor telmisartan and serine protease inhibitor camostat mesilate provides further renoprotection in a rat chronic kidney disease model. J Pharm Sci. 2016;130:110–6.

    Article  CAS  Google Scholar 

  42. Ueda M, Uchimura K, Narita Y, Miyasato Y, Mizumoto T, Morinaga J, et al. The serine protease inhibitor camostat mesilate attenuates the progression of chronic kidney disease through its antioxidant effects. Nephron. 2015;129:223–32.

    Article  CAS  Google Scholar 

  43. Edgtton KL, Gow RM, Kelly DJ, Carmeliet P, Kitching AR. Plasmin is not protective in experimental renal interstitial fibrosis. Kidney Int. 2004;66:68–76.

    Article  CAS  Google Scholar 

  44. Asami T, Tomisawa S, Uchiyama M. Effect of oral camostat mesilate on hematuria and/or proteinuria in children. Pediatr Nephrol. 2004;19:313–6.

    Article  Google Scholar 

  45. Ikeda Y, Ito H, Hashimoto K. Effect of camostat mesilate on urinary protein excretion in three patients with advanced diabetic nephropathy. J Diabetes Complications. 1999;13:56–58.

    Article  CAS  Google Scholar 

  46. Matsubara M, Taguma Y, Kurosawa K, Hotta O, Suzuki K, Ishizaki M. Effect of camostat mesilate for the treatment of advanced diabetic nephropathy. J Lab Clin Med. 1990;116:206–10.

    CAS  Google Scholar 

  47. Onbe T, Makino H, Kumagai I, Haramoto T, Murakami K, Ota Z. Effect of proteinase inhibitor camostat mesilate on nephrotic syndrome with diabetic nephropathy. J Diabet Complications. 1991;5:167–8.

    Article  CAS  Google Scholar 

  48. Willis Fox O, Preston RJS. Molecular basis of protease-activated receptor 1 signaling diversity. J Thromb Haemost. 2020;18:6–16.

    Article  CAS  Google Scholar 

  49. Ellis CA, Malik AB, Gilchrist A, Hamm H, Sandoval R, Voyno-Yasenetskaya T, et al. Thrombin induces proteinase-activated receptor-1 gene expression in endothelial cells via activation of Gi-linked Ras/mitogen-activated protein kinase pathway. J Biol Chem. 1999;274:13718–27.

    Article  CAS  Google Scholar 

  50. Guan Y, Nakano D, Zhang Y, Li L, Liu W, Nishida M, et al. A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. J Pharmacol Sci. (e-pub ahead of print 2017/11/08; https://doi.org/10.1016/j.jphs.2017.09.002) 2017.

  51. Sato A, Nishida C, Sato-Kusubata K, Ishihara M, Tashiro Y, Gritli I, et al. Inhibition of plasmin attenuates murine acute graft-versus-host disease mortality by suppressing the matrix metalloproteinase-9-dependent inflammatory cytokine storm and effector cell trafficking. Leukemia. 2015;29:145–56.

    Article  CAS  Google Scholar 

  52. Munakata S, Tashiro Y, Nishida C, Sato A, Komiyama H, Shimazu H, et al. Inhibition of plasmin protects against colitis in mice by suppressing matrix metalloproteinase 9-mediated cytokine release from myeloid cells. Gastroenterology. 2015;148:565–578.e564.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q. Deng was supported by the Otsuka Toshimi Scholarship Foundation, which has enabled him to complete this project successfully. We appreciate Ms. Naoko Hirano and Kazumi Saito for their technical assistance and Ms. Noriko Nakagawa and Miki Horikiri for their secretarial assistance. The Graphical Abstract was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license (https://smart.servier.com).

Funding

This work was supported by the Grants-in-Aid for Scientific Research KAKENHI from Japan Society for the Promotion of Science (20K17250 to T. Nakagawa and 17K09705 to Y. Kakizoe) and the Salt Science Research Foundation (20C3 to Y. Kakizoe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kakizoe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Kakizoe, Y., Iwata, Y. et al. The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats. Hypertens Res 46, 50–62 (2023). https://doi.org/10.1038/s41440-022-01064-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01064-2

Keywords

Search

Quick links