Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Depletion of the gut microbiota enhances the blood pressure-lowering effect of captopril: implication of the gut microbiota in resistant hypertension

Abstract

The role of the gut microbiota in the initiation and progression of hypertension has been newly identified, suggesting that targeting the gut microbiota may provide a new treatment strategy. This entails a complicated interaction between the gut microbiota and different host systems (e.g., immune system) or organs (e.g., gut, spleen) that contribute to blood pressure control. The significance of the gut microbiota in treatment-resistant hypertension is still unknown, owing to a lack of appropriate animal models. Given that the gut microbiota has a variety of enzymatic activities, we hypothesized that the gut microbiota may be involved in the metabolism of antihypertensive medications, causing treatment-resistant hypertension. We investigated this hypothesis in a simple, new hypertension paradigm and found that hypertensive rats pretreated with antibiotics to reduce the gut microbiota had a better response to the angiotensin-converting enzyme inhibitor captopril. This is a simple rodent model for testing the effectiveness of antihypertensive medications. Further mechanistic research may shed light on the pathogenic function of the gut microbiota in resistant hypertension. Our method presents a novel model that has the potential to be employed in the research of resistant hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–37.

    Article  CAS  Google Scholar 

  2. Carey RM, Sakhuja S, Calhoun DA, Whelton PK, Muntner P. Prevalence of apparent treatment-resistant hypertension in the United States. Hypertension. 2019;73:424–31.

    Article  CAS  Google Scholar 

  3. Siddiqui M, Dudenbostel T, Calhoun DA. Resistant and refractory hypertension: antihypertensive treatment resistance vs treatment failure. Can. J. Cardiol. 2016;32:603–6.

  4. Lohmeier TE, Hall JE. Device-based neuromodulation for resistant hypertension therapy. Circ Res. 2019;124:1071–93.

    Article  CAS  Google Scholar 

  5. Raizada MK, Joe B, Bryan NS, Chang EB, Dewhirst FE, Borisy GG, et al. Report of the national heart, lung, and blood institute working group on the role of microbiota in blood pressure regulation: current status and future directions. Hypertension. 2017;70:479–85.

  6. Yang T, Aquino V, Lobaton GO, Li H, Colon-Perez L, Goel R, et al. Sustained captopril-induced reduction in blood pressure is associated with alterations in gut-brain axis in the spontaneously hypertensive rat. J Am Heart Assoc. 2019;8:e010721.

    Article  Google Scholar 

  7. Li HB, Yang T, Richards EM, Pepine CJ, Raizada MK. Maternal treatment with captopril persistently alters gut-brain communication and attenuates hypertension of male offspring. Hypertension. 2020;75:1315–24.

    Article  CAS  Google Scholar 

  8. Kripalani KJ, McKinstry DN, Singhvi SM, Willard DA, Vukovich RA, Migdalof BH. Disposition of captopril in normal subjects. Clin Pharm Ther. 1980;27:636–41.

    Article  CAS  Google Scholar 

  9. Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension - a case report. Int J Cardiol. 2015;201:157–8.

    Article  Google Scholar 

  10. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019;570:462–7.

    Article  CAS  Google Scholar 

  11. Yang T, Mei X, Tackie-Yarboi E, Kyoung J, Mell B, Yeo JY, et al. Identification of a gut microbe that attenuates the blood pressure lowering effect of ACEi Quinapril. Hypertension. 2021;78:AMP38. https://doi.org/10.1161/hyp.78.suppl_1.MP38

    Article  Google Scholar 

  12. Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S, et al. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res. 2015;117:178–91.

    Article  CAS  Google Scholar 

  13. Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genom. 2015;47:187–97.

    Article  CAS  Google Scholar 

  14. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40.

    Article  CAS  Google Scholar 

  15. Joe B, McCarthy CG, Edwards JM, Cheng X, Chakraborty S, Yang T, et al. Microbiota introduced to germ-free rats restores vascular contractility and blood pressure. Hypertension. 2020;76:1847–55.

    Article  CAS  Google Scholar 

  16. Karbach SH, Schönfelder T, Brandão I, Wilms E, Hörmann N, Jäckel S, et al. Gut microbiota promote angiotensin ii-induced arterial hypertension and vascular dysfunction. J. Am. Heart Assoc. 2016;5:e003698.

  17. Cheema MU, Pluznick JL. Gut microbiota plays a central role to modulate the plasma and fecal metabolomes in response to angiotensin II. Hypertension. 2019;74:184–93.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the University of Toledo Startup funds and the American Heart Association Career Development Award 852969 to TY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyoung, J., Yang, T. Depletion of the gut microbiota enhances the blood pressure-lowering effect of captopril: implication of the gut microbiota in resistant hypertension. Hypertens Res 45, 1505–1510 (2022). https://doi.org/10.1038/s41440-022-00921-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00921-4

Keywords

Search

Quick links