Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aldosterone breakthrough from a pharmacological perspective

Abstract

Aldosterone (Aldo) breakthrough is a well-known phenomenon that occurs in patients with long-term renin-angiotensin aldosterone system (RAAS) blockade using inhibitors of renin or angiotensin converting enzyme or angiotensin II type 1 receptor blockers. The blockade of the mineralocorticoid receptor (MR), an Aldo binding receptor, is effective in managing patients with resistant hypertension, defined as uncontrollable blood pressure despite the concurrent use of three antihypertensive drugs. In other words, MR inhibitors are not used as first-line antihypertensive drugs in most guidelines for hypertension management. Aldo breakthrough puts hypertensive patients at higher risk of cardiovascular disease and worsens future outcomes. This review discusses Aldo secretion and the mechanism of Aldo breakthrough, dependent or independent of the RAAS, with consideration of the pharmacological aspects of this phenomenon, as well as hypothetical views.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  2. Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012;25:514–23.

    Article  CAS  PubMed  Google Scholar 

  3. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  4. Morimoto S, Ichihara A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens Res. 2020;43:744–53.

    Article  CAS  PubMed  Google Scholar 

  5. Bravo EL. Regulation of aldosterone secretion: current concepts and newer aspects. Adv Nephrol Necker Hosp. 1977;7:105–20.

    CAS  PubMed  Google Scholar 

  6. Missale C, Lombardi C, Sigala S, Spano PF. Dopaminergic regulation of aldosterone secretion. Biochemical mechanisms and pharmacology. Am J Hypertens. 1990;3:93S–5S.

    Article  CAS  PubMed  Google Scholar 

  7. Lopez AG, Duparc C, Naccache A, Castanet M, Lefebvre H, Louiset E. Role of mast cells in the control of aldosterone secretion. Horm Metab Res. 2020;52:412–20.

    Article  CAS  PubMed  Google Scholar 

  8. Boyer HG, Wils J, Renouf S, Arabo A, Duparc C, Boutelet I, et al. Dysregulation of aldosterone secretion in mast cell-deficient mice. Hypertension 2017;70:1256–63.

    Article  CAS  PubMed  Google Scholar 

  9. Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation 2015;132:2134–45.

    Article  CAS  PubMed  Google Scholar 

  10. Xing Y, Rainey WE, Apolzan JW, Francone OL, Harris RB, Bollag WB. Adrenal cell aldosterone production is stimulated by very-low-density lipoprotein (VLDL). Endocrinology 2012;153:721–31.

    Article  CAS  PubMed  Google Scholar 

  11. Gomez-Sanchez CE, Cozza EN, Foecking MF, Chiou S, Ferris MW. Endothelin receptor subtypes and stimulation of aldosterone secretion. Hypertension 1990;15:744–7.

    Article  CAS  PubMed  Google Scholar 

  12. Rossi GP, Cavallin M, Nussdorfer GG, Pessina AC. The endothelin-aldosterone axis and cardiovascular diseases. J Cardiovasc Pharmacol. 2001;38:S49–52.

    Article  CAS  PubMed  Google Scholar 

  13. Gordon RD, Kuchel O, Liddle GW, Island DP. Role of the sympathetic nervous system in regulating renin and aldosterone production in man. J Clin Investig. 1967;46:599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wils J, Duparc C, Cailleux AF, Lopez AG, Guiheneuf C, Boutelet I, et al. The neuropeptide substance P regulates aldosterone secretion in human adrenals. Nat Commun. 2020;11:2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen TT, Lazure C, Babinski K, Chretien M, Ong H, De Lean A. Aldosterone secretion inhibitory factor: a novel neuropeptide in bovine chromaffin cells. Endocrinology 1989;124:1591–3.

    Article  CAS  PubMed  Google Scholar 

  16. Kawai M, Naruse M, Yoshimoto T, Naruse K, Shionoya K, Tanaka M, et al. C-type natriuretic peptide as a possible local modulator of aldosterone secretion in bovine adrenal zona glomerulosa. Endocrinology 1996;137:42–6.

    Article  CAS  PubMed  Google Scholar 

  17. Miura S, Nakayama A, Tomita S, Matsuo Y, Suematsu Y, Saku K. Comparison of aldosterone synthesis in adrenal cells, effect of various AT1 receptor blockers with or without atrial natriuretic peptide. Clin Exp Hypertens. 2015;37:353–7.

    Article  CAS  PubMed  Google Scholar 

  18. Miura SI, Suematsu Y, Matsuo Y, Tomita S, Nakayama A, Goto M, et al. The angiotensin II type 1 receptor-neprilysin inhibitor LCZ696 blocked aldosterone synthesis in a human adrenocortical cell line. Hypertens Res. 2016;39:758–63.

    Article  CAS  PubMed  Google Scholar 

  19. Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84:489–539.

    Article  CAS  PubMed  Google Scholar 

  20. Min LJ, Mogi M, Li JM, Iwanami J, Iwai M, Horiuchi M. Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ Res. 2005;97:434–42.

    Article  CAS  PubMed  Google Scholar 

  21. Min LJ, Mogi M, Iwanami J, Li JM, Sakata A, Fujita T, et al. Cross-talk between aldosterone and angiotensin II in vascular smooth muscle cell senescence. Cardiovasc Res. 2007;76:506–16.

    Article  CAS  PubMed  Google Scholar 

  22. Min LJ, Mogi M, Iwai M, Horiuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev. 2009;8:113–21.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki J, Iwai M, Mogi M, Oshita A, Yoshii T, Higaki J, et al. Eplerenone with valsartan effectively reduces atherosclerotic lesion by attenuation of oxidative stress and inflammation. Arterioscler Thromb Vasc Biol. 2006;26:917–21.

    Article  CAS  PubMed  Google Scholar 

  24. Rautureau Y, Paradis P, Schiffrin EL. Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids 2011;76:834–9.

    CAS  PubMed  Google Scholar 

  25. Staessen J, Lijnen P, Fagard R, Verschueren LJ, Amery A. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981;91:457–65.

    Article  CAS  PubMed  Google Scholar 

  26. Yoneda T, Takeda Y, Usukura M, Oda N, Takata H, Yamamoto Y, et al. Aldosterone breakthrough during angiotensin II receptor blockade in hypertensive patients with diabetes mellitus. Am J Hypertens. 2007;20:1329–33.

    Article  CAS  PubMed  Google Scholar 

  27. Sato A, Fukuda S. Effect of aldosterone breakthrough on albuminuria during treatment with a direct renin inhibitor and combined effect with a mineralocorticoid receptor antagonist. Hypertens Res. 2013;36:879–84.

    Article  CAS  PubMed  Google Scholar 

  28. Hashimoto A, Takeda Y, Karashima S, Kometani M, Aono D, Demura M, et al. Impact of mineralocorticoid receptor blockade with direct renin inhibition in angiotensin II-dependent hypertensive mice. Hypertens Res. 2020;43:1099–104.

    Article  CAS  PubMed  Google Scholar 

  29. Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pr Nephrol. 2007;3:486–92.

    Article  CAS  Google Scholar 

  30. Schrier RW. Aldosterone ‘escape’ vs ‘breakthrough’. Nat Rev Nephrol. 2010;6:61.

    Article  PubMed  Google Scholar 

  31. Sato A, Saruta T. Aldosterone escape during angiotensin-converting enzyme inhibitor therapy in essential hypertensive patients with left ventricular hypertrophy. J Int Med Res. 2001;29:13–21.

    Article  CAS  PubMed  Google Scholar 

  32. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 2003;41:64–8.

    Article  CAS  PubMed  Google Scholar 

  33. Schjoedt KJ, Andersen S, Rossing P, Tarnow L, Parving HH. Aldosterone escape during blockade of the renin-angiotensin-aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia 2004;47:1936–9.

    Article  CAS  PubMed  Google Scholar 

  34. Koide M, Harraz OF, Dabertrand F, Longden TA, Ferris HR, Wellman GC, et al. Differential restoration of functional hyperemia by antihypertensive drug classes in hypertension-related cerebral small vessel disease. J Clin Investig. 2021;131:e149029.

  35. Sato A, Saruta T. Aldosterone breakthrough during angiotensin-converting enzyme inhibitor therapy. Am J Hypertens. 2003;16:781–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pivonello R, Ferone D, de Herder WW, de Krijger RR, Waaijers M, Mooij DM, et al. Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J Clin Endocrinol Metab. 2004;89:4493–502.

    Article  CAS  PubMed  Google Scholar 

  37. Wu KD, Chen YM, Chu TS, Chueh SC, Wu MH, Bor-Shen H. Expression and localization of human dopamine D2 and D4 receptor mRNA in the adrenal gland, aldosterone-producing adenoma, and pheochromocytoma. J Clin Endocrinol Metab. 2001;86:4460–7.

    Article  CAS  PubMed  Google Scholar 

  38. LeHoux JG, Lefebvre A. Transcriptional activity of the hamster CYP11B2 promoter in NCI-H295 cells stimulated by angiotensin II, potassium, forskolin and bisindolylmaleimide. J Mol Endocrinol. 1998;20:183–91.

    Article  CAS  PubMed  Google Scholar 

  39. Chang HW, Chu TS, Huang HY, Chueh SC, Wu VC, Chen YM, et al. Down-regulation of D2 dopamine receptor and increased protein kinase Cmu phosphorylation in aldosterone-producing adenoma play roles in aldosterone overproduction. J Clin Endocrinol Metab. 2007;92:1863–70.

    Article  CAS  PubMed  Google Scholar 

  40. Chang HW, Wu VC, Huang CY, Huang HY, Chen YM, Chu TS, et al. D4 dopamine receptor enhances angiotensin II-stimulated aldosterone secretion through PKC-epsilon and calcium signaling. Am J Physiol Endocrinol Metab. 2008;294:E622–9.

    Article  CAS  PubMed  Google Scholar 

  41. Perez-Lloret S, Otero-Losada M, Toblli JE, Capani F. Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson’s disease. Expert Opin Investig Drugs. 2017;26:1163–73.

    Article  CAS  PubMed  Google Scholar 

  42. Ohshima K, Mogi M, Horiuchi M. Therapeutic approach for neuronal disease by regulating renin-angiotensin system. Curr Hypertens Rev. 2013;9:99–107.

    Article  CAS  PubMed  Google Scholar 

  43. Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener. 2007;2:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nakaoka H, Mogi M, Kan-No H, Tsukuda K, Ohshima K, Wang XL, et al. Angiotensin II type 2 receptor signaling affects dopamine levels in the brain and prevents binge eating disorder. J Renin Angiotensin Aldosterone Syst. 2015;16:749–57.

    Article  CAS  PubMed  Google Scholar 

  45. Naruse M, Tanabe A, Sato A, Takagi S, Tsuchiya K, Imaki T, et al. Aldosterone breakthrough during angiotensin II receptor antagonist therapy in stroke-prone spontaneously hypertensive rats. Hypertension 2002;40:28–33.

    Article  CAS  PubMed  Google Scholar 

  46. Tanabe A, Naruse M, Arai K, Naruse K, Yoshimoto T, Seki T, et al. Gene expression and roles of angiotensin II type 1 and type 2 receptors in human adrenals. Horm Metab Res. 1998;30:490–5.

    Article  CAS  PubMed  Google Scholar 

  47. Mazzocchi G, Gottardo G, Macchi V, Malendowicz LK, Nussdorfer GG. The AT2 receptor-mediated stimulation of adrenal catecholamine release may potentiate the AT1 receptor-mediated aldosterone secretagogue action of angiotensin-II in rats. Endocr Res. 1998;24:17–28.

    Article  CAS  PubMed  Google Scholar 

  48. Yatabe J, Yoneda M, Yatabe MS, Watanabe T, Felder RA, Jose PA, et al. Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology 2011;152:1582–8.

    Article  CAS  PubMed  Google Scholar 

  49. Takeda Y, Demura M, Yoneda T, Takeda Y. DNA Methylation of the angiotensinogen gene, AGT, and the aldosterone synthase gene, CYP11B2 in cardiovascular diseases. Int J Mol Sci. 2021;22:4587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Otani H, Otsuka F, Inagaki K, Suzuki J, Miyoshi T, Kano Y, et al. Aldosterone breakthrough caused by chronic blockage of angiotensin II type 1 receptors in human adrenocortical cells: possible involvement of bone morphogenetic protein-6 actions. Endocrinology 2008;149:2816–25.

    Article  CAS  PubMed  Google Scholar 

  51. Spat A. Glomerulosa cell–a unique sensor of extracellular K+ concentration. Mol Cell Endocrinol. 2004;217:23–6.

    Article  CAS  PubMed  Google Scholar 

  52. Kerstens MN, van der Kleij FG, Boonstra AH, Sluiter WJ, van der Molen JC, Navis G, et al. Angiotensin administration stimulates renal 11 beta-hydroxysteroid dehydrogenase activity in healthy men. Kidney Int. 2004;65:2065–70.

    Article  CAS  PubMed  Google Scholar 

  53. Adamcova M, Kawano I, Simko F. The impact of microRNAs in renin-angiotensin-system-induced cardiac remodelling. Int J Mol Sci. 2021;22:4762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maharjan S, Mopidevi B, Kaw MK, Puri N, Kumar A. Human aldosterone synthase gene polymorphism promotes miRNA binding and regulates gene expression. Physiol Genom. 2014;46:860–5.

    Article  CAS  Google Scholar 

  55. Garg A, Foinquinos A, Jung M, Janssen-Peters H, Biss S, Bauersachs J, et al. MiRNA-181a is a novel regulator of aldosterone-mineralocorticoid receptor-mediated cardiac remodelling. Eur J Heart Fail. 2020;22:1366–77.

    Article  CAS  PubMed  Google Scholar 

  56. Butterworth MB. MicroRNAs and the regulation of aldosterone signaling in the kidney. Am J Physiol Cell Physiol. 2015;308:C521–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bomback AS, Kshirsagar AV, Amamoo MA, Klemmer PJ. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am J Kidney Dis. 2008;51:199–211.

    Article  PubMed  Google Scholar 

  58. Oka T, Sakaguchi Y, Hattori K, Asahina Y, Kajimoto S, Doi Y, et al. Mineralocorticoid receptor antagonist use and hard renal outcomes in real-world patients with chronic kidney disease. Hypertension 2022;79:679–89.

    Article  CAS  PubMed  Google Scholar 

  59. Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov. 2018;17:243–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferraino KE, Cora N, Pollard CM, Sizova A, Maning J, Lymperopoulos A. Adrenal angiotensin II type 1 receptor biased signaling: The case for “biased” inverse agonism for effective aldosterone suppression. Cell Signal. 2021;82:109967.

    Article  CAS  PubMed  Google Scholar 

  61. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ. An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci USA 2009;106:5825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sezai A, Osaka S, Yaoita H, Arimoto M, Hata H, Shiono M, et al. Changeover trial of azilsartan and olmesartan comparing effects on the renin-angiotensin-aldosterone system in patients with essential hypertension after cardiac surgery (CHAOS Study). Ann Thorac Cardiovasc Surg. 2016;22:161–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sezai A, Soma M, Hata M, Yoshitake I, Unosawa S, Wakui S, et al. Effects of olmesartan on the renin-angiotensin-aldosterone system for patients with essential hypertension after cardiac surgery–investigation using a candesartan change-over study. Ann Thorac Cardiovasc Surg. 2011;17:487–93.

    Article  PubMed  Google Scholar 

  64. Tsutamoto T, Nishiyama K, Yamaji M, Kawahara C, Fujii M, Yamamoto T, et al. Comparison of the long-term effects of candesartan and olmesartan on plasma angiotensin II and left ventricular mass index in patients with hypertension. Hypertens Res. 2010;33:118–22.

    Article  CAS  PubMed  Google Scholar 

  65. Eklind-Cervenka M, Benson L, Dahlstrom U, Edner M, Rosenqvist M, Lund LH. Association of candesartan vs losartan with all-cause mortality in patients with heart failure. JAMA 2011;305:175–82.

    Article  CAS  PubMed  Google Scholar 

  66. Svanstrom H, Pasternak B, Hviid A. Association of treatment with losartan vs candesartan and mortality among patients with heart failure. JAMA 2012;307:1506–12.

    Article  PubMed  Google Scholar 

  67. Toth AD, Prokop S, Gyombolai P, Varnai P, Balla A, Gurevich VV, et al. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by beta-arrestins. J Biol Chem. 2018;293:876–92.

    Article  CAS  PubMed  Google Scholar 

  68. Sun N, Kim KM. Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Arch Pharm Res. 2021;44:342–53.

    Article  CAS  PubMed  Google Scholar 

  69. Moellenhoff E, Blume A, Culman J, Chatterjee B, Herdegen T, Lebrun CJ, et al. Effect of repetitive icv injections of ANG II on c-Fos and AT(1)-receptor expression in the rat brain. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1095–104.

    Article  CAS  PubMed  Google Scholar 

  70. Vento PJ, Daniels D. Mitogen-activated protein kinase is required for the behavioural desensitization that occurs after repeated injections of angiotensin II. Exp Physiol. 2012;97:1305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Calebiro D, Nikolaev VO, Lohse MJ. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors. J Mol Endocrinol. 2010;45:1–8.

    Article  CAS  PubMed  Google Scholar 

  72. Burton JC, Grimsey NJ. Ubiquitination as a key regulator of endosomal signaling by GPCRs. Front Cell Dev Biol. 2019;7:43.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fujita K, Aguilera G, Catt KJ. The role of cyclic AMP in aldosterone production by isolated zona glomerulosa cells. J Biol Chem. 1979;254:8567–74.

    Article  CAS  PubMed  Google Scholar 

  74. Giubilaro J, Schuetz DA, Stepniewski TM, Namkung Y, Khoury E, Lara-Marquez M, et al. Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nat Commun. 2021;12:4688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhuiyan MA, Hossain M, Nakamura T, Ozaki M, Nagatomo T. Internalization of constitutively active N111G MUTANT of AT1 receptor induced by angiotensin II-receptor antagonists candesartan, losartan, and telmisartan: comparison with valsartan. J Pharm Sci. 2010;112:459–62.

    Article  CAS  Google Scholar 

  76. Deshotels MR, Xia H, Sriramula S, Lazartigues E, Filipeanu CM. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension 2014;64:1368–75.

    Article  CAS  PubMed  Google Scholar 

  77. Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin receptors heterodimerization and trafficking: how much do they influence their biological function? Front Pharmacol. 2020;11:1179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Martinez-Pinilla E, Rodriguez-Perez AI, Navarro G, Aguinaga D, Moreno E, Lanciego JL, et al. Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem Pharmacol. 2015;96:131–42.

    Article  CAS  PubMed  Google Scholar 

  79. Li H, Armando I, Yu P, Escano C, Mueller SC, Asico L, et al. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. J Clin Investig. 2008;118:2180–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. O’Connor PJ, Sperl-Hillen JAM, Johnson PE, Rush WA, Biltz G. Clinical inertia and outpatient medical errors. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in Patient Safety: From Research to Implementation (Volume 2: Concepts and Methodology). https://www.ncbi.nlm.nih.gov/pubmed/21249838.): Rockville (MD), 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mogi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mogi, M. Aldosterone breakthrough from a pharmacological perspective. Hypertens Res 45, 967–975 (2022). https://doi.org/10.1038/s41440-022-00913-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00913-4

Keywords

  • Aldosterone breakthrough
  • Angiotensin II type 1 receptor
  • Mineralocorticoid receptor
  • Receptor function
  • β-arrestin

This article is cited by

Search

Quick links