Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The hypoxia-inducible factor prolyl hydroxylase inhibitor FG4592 promotes natriuresis through upregulation of COX2 in the renal medulla

Abstract

The renal medulla is a key site for the regulation of renal sodium excretion. However, the molecular mechanism remains unclear. Cyclooxygenase 2 (COX2) is specifically expressed in the renal medulla and contributes to the maintenance of the electrolyte/water balance in the body. Hypoxia-inducible factors (HIFs) have also been found to be expressed in the renal medulla, probably owing to the hypoxic conditions in the renal medulla. This study was designed to test the effects of HIF activation on renal sodium handling and renal medullary COX2 expression. Our data showed that HIF activation by the prolyl hydroxylase inhibitor (PHI) FG4592 enhanced natriuresis in mice challenged with a high-salt diet. In addition, FG4592 upregulated the expression of COX2 in the renal medulla. An in vitro study further supported the finding that HIF can induce the expression of COX2 and that this induction is mediated through direct binding to the promoter region of the Cox2 gene, facilitating its transcription. In addition, the COX2 inhibitor celecoxib diminished the natriuretic effect of FG4592. Together, these results suggest that HIF activation promotes sodium excretion through upregulation of COX2 in the renal medulla and therefore maintains sodium homeostasis in the body.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cowley AW Jr. Role of the renal medulla in volume and arterial pressure regulation. Am J Physiol. 1997;273:R1–15.

    CAS  PubMed  Google Scholar 

  2. Mattson DL, Roman RJ, Cowley AW Jr. Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 1992;19:766–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kohan DE. The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure. Curr Opin Nephrol Hypertens. 2006;15:34–40.

    Article  CAS  PubMed  Google Scholar 

  4. Ye W, Zhang H, Hillas E, Kohan DE, Miller RL, Nelson RD, et al. Expression and function of COX isoforms in renal medulla: evidence for regulation of salt sensitivity and blood pressure. Am J Physiol Ren Physiol. 2006;290:F542–9.

    Article  CAS  Google Scholar 

  5. Yang T, Liu M. Regulation and function of renal medullary cyclooxygenase-2 during high salt loading. Front Biosci. 2017;22:128–36.

    Article  CAS  Google Scholar 

  6. He W, Zhang M, Zhao M, Davis LS, Blackwell TS, Yull F, et al. Increased dietary sodium induces COX2 expression by activating NFkappaB in renal medullary interstitial cells. Pflug Arch. 2014;466:357–67.

    Article  CAS  Google Scholar 

  7. Zewde T, Mattson DL. Inhibition of cyclooxygenase-2 in the rat renal medulla leads to sodium-sensitive hypertension. Hypertension 2004;44:424–8.

    Article  CAS  PubMed  Google Scholar 

  8. Zou AP, Yang ZZ, Li PL, Cowley AJ. Oxygen-dependent expression of hypoxia-inducible factor-1alpha in renal medullary cells of rats. Physiol Genom. 2001;6:159–68.

    Article  CAS  Google Scholar 

  9. Manotham K, Tanaka T, Ohse T, Kojima I, Miyata T, Inagi R, et al. A biologic role of HIF-1 in the renal medulla. Kidney Int. 2005;67:1428–39.

    Article  CAS  PubMed  Google Scholar 

  10. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5:343–54.

    Article  CAS  PubMed  Google Scholar 

  11. Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Science’s STKE: Signal Transduct Knowl Environ. 2005;2005:re12.

    Google Scholar 

  12. Rytkonen KT, Williams TA, Renshaw GM, Primmer CR, Nikinmaa M. Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Mol Biol Evol. 2011;28:1913–26.

    Article  PubMed  Google Scholar 

  13. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Zhu Q, Xia M, Li PL, Hinton SJ, Li N. Hypoxia-inducible factor prolyl-hydroxylase 2 senses high-salt intake to increase hypoxia inducible factor 1alpha levels in the renal medulla. Hypertension 2010;55:1129–36.

    Article  CAS  PubMed  Google Scholar 

  15. Li N, Chen L, Yi F, Xia M, Li PL. Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1alpha in the renal medulla. Circ Res. 2008;102:1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan L, Colandrea VJ, Hale JJ. Prolyl hydroxylase domain-containing protein inhibitors as stabilizers of hypoxia-inducible factor: small molecule-based therapeutics for anemia. Expert Opin Ther Pat. 2010;20:1219–45.

    Article  CAS  PubMed  Google Scholar 

  18. Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE, Gunzler V, et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol. 2010;21:2151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol. 2016;12:157–68.

    Article  CAS  PubMed  Google Scholar 

  20. Xue X, Shah YM. Hypoxia-inducible factor-2alpha is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis 2013;34:163–9.

    Article  CAS  PubMed  Google Scholar 

  21. Xing Y, Wang R, Chen D, Mao J, Shi R, Wu Z, et al. COX2 is involved in hypoxia-induced TNF-alpha expression in osteoblast. Sci Rep. 2015;5:10020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gohar EY, Speed JS, Kasztan M, Jin C, Pollock DM. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats. Am J Physiol-Ren Physiol. 2016;311:F260–F7.

    Article  CAS  Google Scholar 

  23. Pallone TL, Edwards A, Mattson DL. Renal medullary circulation. Compr Physiol. 2012;2:97–140.

    Article  PubMed  Google Scholar 

  24. Chen J, Zhao M, He W, Milne GL, Howard JR, Morrow J, et al. Increased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor. Am J Physiol Ren Physiol. 2008;295:F818–25.

    Article  CAS  Google Scholar 

  25. Epstein FH. Oxygen and renal metabolism. Kidney Int. 1997;51:381–5.

    Article  CAS  PubMed  Google Scholar 

  26. Della Penna SL, Cao G, Carranza A, Zotta E, Gorzalczany S, Cerrudo CS, et al. Renal overexpression of atrial natriuretic peptide and hypoxia inducible factor-1α as adaptive response to a high salt diet. Biomed Res Int. 2014;2014:936978.

    PubMed  PubMed Central  Google Scholar 

  27. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol. 2007;27:912–25.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Q, Hu J, Wang L, Wang W, Wang Z, Li PL, et al. Inhibition of microRNA-429 in the renal medulla increased salt sensitivity of blood pressure in Sprague Dawley rats. J Hypertens. 2017;35:1872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang W, Shen J, Cui Y, Jiang J, Chen S, Peng J, et al. Impaired sodium excretion and salt-sensitive hypertension in corin-deficient mice. Kidney Int. 2012;82:26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu Q, Wang Z, Xia M, Li PL, Zhang F, Li N. Overexpression of HIF-1alpha transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats. Biochimica et Biophysica Acta. 2012;1822:936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eschbach JW. The anemia of chronic renal failure: pathophysiology and the effects of recombinant erythropoietin. Kidney Int. 1989;35:134–48.

    Article  CAS  PubMed  Google Scholar 

  32. Klinkmann H, Schmidt R, Wieczorek L, Scigalla P. Adverse events of subcutaneous recombinant human erythropoietin therapy. Contrib Nephrol. 1992;100:127–38.

    Article  CAS  PubMed  Google Scholar 

  33. Del Vecchio L, Lusenti T, Del Rosso G, Malandra R, Balducci A, Losito A, et al. Prevalence of hypertension in a large cohort of Italian hemodialysis patients: results of a cross-sectional study. J Nephrol. 2013;26:745–54.

    Article  PubMed  Google Scholar 

  34. Strippoli GF, Craig JC, Manno C, Schena FP. Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol. 2004;15:3154–65.

    Article  PubMed  Google Scholar 

  35. Brier ME, Bunke CM, Lathon PV, Aronoff GR. Erythropoietin-induced antinatriuresis mediated by angiotensin II in perfused kidneys. J Am Soc Nephrol. 1993;3:1583–90.

    Article  CAS  PubMed  Google Scholar 

  36. Yousaf F, Spinowitz B. Hypoxia-inducible factor stabilizers: a new avenue for reducing BP while helping hemoglobin? Curr Hypertens Rep. 2016;18:23.

    Article  PubMed  Google Scholar 

  37. Brigandi RA, Johnson B, Oei C, Westerman M, Olbina G, de Zoysa J, et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for Anemia in CKD: a 28-day, Phase 2A randomized trial. Am J Kidney Dis. 2016;67:861–71.

    Article  CAS  PubMed  Google Scholar 

  38. Flamme I, Oehme F, Ellinghaus P, Jeske M, Keldenich J, Thuss U. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects. PloS One. 2014;9:e111838.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaidi A, Qualtrough D, Williams AC, Paraskeva C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res. 2006;66:6683–91.

    Article  CAS  PubMed  Google Scholar 

  40. Hao CM, Breyer MD. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int. 2007;71:1105–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Hui Cai (Vanderbilt University) for performing the mixed model analysis in SAS.

Funding

National Natural Science Foundation of China [81400711] and China International Medical Foundation [Z-2017-24-2037].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Ming Hao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, N., Zhang, M., Gong, WY. et al. The hypoxia-inducible factor prolyl hydroxylase inhibitor FG4592 promotes natriuresis through upregulation of COX2 in the renal medulla. Hypertens Res 45, 814–823 (2022). https://doi.org/10.1038/s41440-022-00889-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00889-1

Keywords

Search

Quick links