Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Borneol reduces sympathetic vasomotor hyperactivity and restores depressed baroreflex sensitivity in rats with renovascular hypertension

Abstract

Borneol is a bicyclic monoterpene that has long been used in traditional Chinese medicine to increase blood–brain barrier permeability and has shown promising cardiovascular effects. The present study aimed to evaluate the effect of borneol on vascular tone, blood pressure, autonomic function, and baroreflex sensitivity in normotensive and hypertensive rats. A combination of in vitro and in vivo assays was performed in 2-kidneys-1-clip hypertensive rats (2K1C) and their controls (sham). We assessed the in vivo effect of oral treatment with borneol on blood pressure, heart rate, autonomic function, and baroreflex sensitivity in sham and 2K1C rats. Additionally, the vasorelaxant effect of borneol in the superior mesenteric artery isolated from rats and its mechanism of action were evaluated. Oral administration of borneol (125 mg/kg/day) reduced blood pressure, sympathetic vasomotor hyperactivity, and serum oxidative stress and improved baroreflex sensitivity in 2K1C rats. In vessel preparations, borneol induced endothelium-independent vasodilatation after precontraction with phenylephrine or KCl (60 mM). There was no difference in the vascular effect induced by borneol in either the 2K1C or the sham group. In addition, borneol antagonized the contractions induced by CaCl2 and reversed (S)-(−)-Bay K 8644-induced contraction. These data suggest that borneol presents antihypertensive effects in 2K1C rats, which is associated with its ability to improve autonomic impairment and baroreflex dysfunction. The borneol-induced relaxation in the superior mesenteric artery involves L-type Ca2+ channel blockade. This vascular action associated with the antioxidant effect induced by borneol may be responsible, at least in part, for the in vivo effects induced by this monoterpene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Noubiap JJ, Nansseu JR, Nyaga UF, Sime PS, Francis I, Bigna JJ. Global prevalence of resistant hypertension: a meta-analysis of data from 32 million patients. Heart. 2019;105:98–105. https://doi.org/10.1136/heartjnl-2018-313599.

    Article  PubMed  Google Scholar 

  2. Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S. et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv. 2018;18:1–12. https://doi.org/10.1016/j.biotechadv.2018.11.005.

    Article  CAS  Google Scholar 

  3. Tabanca N, Kirimer N, Demirci B, Demirci F, Baser KH. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. Phrygia and the enantiomeric distribution of borneol. J Agric Food Chem. 2001;49:4300–3.

    Article  CAS  PubMed  Google Scholar 

  4. Tabanca N, Demirci B, Baser KH, Aytac Z, Ekici M, Khan SI, et al. Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita essential oils. J Agric Food Chem. 2006;54:6593–7.

    Article  CAS  PubMed  Google Scholar 

  5. Svoboda, KP, Hampson, JB. Bioactivity of essential oils of selected temperate aromatic plants: antibacterial, antioxidant, antiinflammatory and other related pharmacological activities. In: Speciality chemicals for the 21st century, ADEME/IENICA. 1999; pp. 1–17. Available from http://ienica.csl.gov.uk/specchemseminar/svoboda.pdf.

  6. Silva-Filho JC, Oliveira NNPM, Arcanjo DDR, Quintans-Júnior LJ, Cavalcanti SCH, Santos MRV, et al. Investigation of mechanisms involved in (−)-Borneol-induced vasorelaxant response on rat thoracic aorta. Basic Clin Pharmacol Toxicol. 2011;110:171–7.

    Article  PubMed  Google Scholar 

  7. Santos SE, Ribeiro FPRA, Menezes P,MN, Duarte-Filho LAM, Quintans JSS, Quintans-Junior LJ. et al. New insights on relaxant effects of (−)-borneol monoterpene in rat aortic rings. Fundam Clin Pharm. 2019;33:148–58. https://doi.org/10.1111/fcp.12417.

    Article  CAS  Google Scholar 

  8. Kumar MS, Kumar S, Raja B. Antihypertensive and antioxidant potential of borneol-A natural terpene in L-NAME – Induced hypertensive rats. Int J Pharm Biol Arch. 2010;1:271–9.

    Google Scholar 

  9. Braga VA, Medeiros IA, Ribeiro TP, França-Silva MS, Botelho-Ono MS, Guimarães DD. Angiotensin-II-induced reactive oxygen species along the SFO-PVN-RVLM pathway: implications in neurogenic hypertension. Braz J Med Biol Res Line. 2011;44:871–6. https://doi.org/10.1590/S0100-879X2011007500088.

    Article  CAS  Google Scholar 

  10. Braga VA. Depressed baroreflex sensitivity in hypertensive rats: a role for reactive oxygen species. J Hypertens. 2012;1:103. https://doi.org/10.4172/2167-1095.1000e103.

    Article  Google Scholar 

  11. Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol. 2011;300:818–26. https://doi.org/10.1152/ajpregu.00426.2010.

    Article  CAS  Google Scholar 

  12. Oliveira-Sales EB, Toward MA, Campos RR, Paton JF. Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats. AutonNeurosci. 2014;183:23–29. https://doi.org/10.1016/j.autneu.2014.02.001.

    Article  Google Scholar 

  13. Campos RR, Oliveira-Sales EB, Nishi EE, Paton JF, Bergamaschi CT. Mechanisms of renal sympathetic activation in renovascular hypertension. Exp Physiol. 2015;100:496–501. https://doi.org/10.1113/expphysiol.2014.079855.

    Article  CAS  PubMed  Google Scholar 

  14. Martinez-Maldonado M. Pathophysiology of renovascular hypertension. Hypertension. 1991;17:707–719. https://doi.org/10.1161/01.hyp.17.5.707.

    Article  CAS  PubMed  Google Scholar 

  15. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension. The production of persistent elevation systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–78. https://doi.org/10.1084/jem.59.3.347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen JY, Huang XT, Wang JJ, Chen Y. In vivo effect of borneol on rat hepatic CYP2B expression and activity. Chem Biol Interact. 2017;5:96–102. https://doi.org/10.1016/j.cbi.2016.11.024. 261.

    Article  CAS  Google Scholar 

  17. Queiroz TM, Guimarães DD, Mendes-Junior LG, Braga VA. a-lipoic acid reduces hypertension and increases baroreflex sensitivity in renovascular hypertensive rats. Molecules. 2012;17:13357–67. https://doi.org/10.3390/molecules171113357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka Y, Mochizuki Y, Shigenobu K. Significant role of neuronal non-N-type calcium channels in the sympathetic neurogenic contraction of rat mesenteric. Br J Pharmacol. 1999;128:1602–8. https://doi.org/10.1038/sj.bjp.0702954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cavalcanti CO, Alves RR, De Oliveira AL, Cruz JC, De França-Silva MS, Braga VA. et al. Inhibition of PDE5 restores depressed baroreflex sensitivity in renovascular hypertensive rats. Front Physiol. 2016;7:15. https://doi.org/10.3389/fphys.2016.00015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carvalho-Galvão A, Ogunlade B, Xu J, Silva-Alves CRA, Mendes-Júnior LG, Guimarães DD. et al. Central administration of TRV027 improves baroreflex sensitivity and vascular reactivity in spontaneously hypertensive rats. Clin Sci. 2018;132:1513–27. https://doi.org/10.1042/CS20180222.

    Article  Google Scholar 

  21. Cerutti C, Gustin MP, Paultre CZ, Lo M, Julien C, Vincent M. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am J Physiol. 1991;261:1292–1299. https://doi.org/10.1152/ajpheart.1991.261.4.H1292.

    Article  Google Scholar 

  22. Mendes-Júnior LG, Guimarães DD, Gadelha DDA, Diniz TF, Brandão MCR, Athayde-Filho PF. et al. The new nitric oxide donor cyclohexane nitrate induces vasorelaxation, hypotension, and antihypertensive effects via NO/cGMP/PKG pathway. Front Physiol. 2015;243:1–9. https://doi.org/10.3389/fphys.2015.00243.

    Article  Google Scholar 

  23. Li P, Huang P-P, Yang Y, Liu C, Lu Y, Wang F. et al. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol. 2017;122:121–9. https://doi.org/10.1152/japplphysiol.01019.2015.

    Article  PubMed  Google Scholar 

  24. Botelho-Ono MS, Pina HV, Sousa KHF, Nunes FC, Medeiros IA, Braga VA. Acute superoxide scavenging restores depressed baroreflex sensitivity in renovascular hypertensive rats. Auton Neurosci. 2011;159:38–44. https://doi.org/10.1016/j.autneu.2010.07.025.

    Article  CAS  PubMed  Google Scholar 

  25. Oliveira-Sales EB, Nishi EE, Carillo BA, Boim MA, Dolnikoff MS, Bergamaschi CT. et al. Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension. Am J Hypertens. 2009;22:484–92. https://doi.org/10.1038/ajh.2009.17.

    Article  CAS  PubMed  Google Scholar 

  26. Navar LG, Zou L, Thun AV, Wang CT, Imig JD, Mitchell KD. Unraveling the mystery of goldblatt hypertension. N. Physiol Sci. 1998;13:170–76. https://doi.org/10.1152/physiologyonline.1998.13.4.170.

    Article  CAS  Google Scholar 

  27. Lucera GM, Menani JV, Colombari E, Colombari DSA. ANG II and aldosterone acting centrally participate in the enhanced sodium intake in water-deprived renovascular hypertensive rats. Front Pharm. 2021;12:1–10. https://doi.org/10.3389/fphar.2021.679985.

    Article  CAS  Google Scholar 

  28. Cabral AM, Vasquez EG. Time course of cardiac sympathetic and vagal tone changes in renovascular hypertensive rats. Am J Hypertension. 1991;4:815–9. https://doi.org/10.1093/ajh/4.10.815.

    Article  CAS  Google Scholar 

  29. Oliveira-Sales EB, Colombari E, Abdala AP, Campos RR, Paton JFR. Sympathetic overactivity occurs before hypertension in the two-kidney, one-clip model. Exp Physiol. 2016;101:67–80. https://doi.org/10.1113/EP085390.

    Article  PubMed  Google Scholar 

  30. Oliveira-Sales EB, Toward MA, Campos RR, Paton JFR. Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats. Autonomic Neurosci: Basic Clin. 2014;183:23–29. https://doi.org/10.1016/j.autneu.2014.02.001.

    Article  Google Scholar 

  31. Liu R, Zhang L, Lan X, Li L, Zhang TT, Sun JH. et al. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: involvement of anti-oxidation and anti-inflammation through nuclear transcription factor κappaB signaling pathway. Neuroscience. 2011;176:408–19. https://doi.org/10.1016/j.neuroscience.2010.11.029.

    Article  CAS  PubMed  Google Scholar 

  32. Nishi EE, Bergamaschi CT, Oliveira-Sales EB, Simon KA, Campos RR. Losartan reduces oxidative stress within the rostral ventrolateral medulla of rats with renovascular hypertension. Am J Hypertens. 2013;26:858–65. https://doi.org/10.1093/ajh/hpt037.

    Article  CAS  PubMed  Google Scholar 

  33. Faber JE, Brody MJ. Neural contribution to renal hypertension following acute renal artery stenosis in conscious rats. Hypertension. 1983;5:155–64. https://doi.org/10.1161/01.hyp.5.2_pt_2.i155.

    Article  CAS  Google Scholar 

  34. Saavedra JM. Brain angiotensin II: new developments, un- answered questions and therapeutic opportunities. Cell Mol Neurobiol. 2005;25:485–512. https://doi.org/10.1007/s10571-005-4011-5.

    Article  CAS  PubMed  Google Scholar 

  35. Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol. 2011;300:R818–R826. https://doi.org/10.1152/ajpregu.00426.2010.

    Article  CAS  PubMed  Google Scholar 

  36. Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients. 2019;11:1–25. https://doi.org/10.3390/nu11092090.

    Article  CAS  Google Scholar 

  37. Zygmunt PM, Ryman T, Hogestatt ED. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms. Acta Physiol Scand. 1995;155:257–66. https://doi.org/10.1111/j.1748-1716.1995.tb09972.x.

    Article  CAS  PubMed  Google Scholar 

  38. O’brien SF, Mckendrick JD, Radomski MW, Davidge ST, Russell JC. Vascular wall reactivity in conductance and resistance arteries: differential effects of insulin resistance. Can J Physiol Pharmacol. 1998;76:72–6.

    Article  PubMed  Google Scholar 

  39. Folkow B. Physiological aspects of primary hypertension. Physiological Rev. 1982;62:347. https://doi.org/10.1152/physrev.1982.62.2.347.

    Article  CAS  Google Scholar 

  40. Zhang, QL; Fu, BM; Zhang, ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv. 2017;24:1037–44. https://doi.org/10.1080/10717544.2017.1346002.

  41. Zheng Q, Chen ZX, Xu MB, Zhou XL, Huang YY, Zheng GQ. et al. Borneol, a messenger agent, improves central nervous system drug delivery through enhancing blood-brain barrier permeability: a preclinical systematic review and meta-analysis. Drug Deliv. 2018;25:1617–33. https://doi.org/10.1080/10717544.2018.1486471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu JY, Li YJ, Yang L, Hu YY, Hu XB, Tang TT. et al. Borneol and Α-asarone as adjuvant agents for improving blood-brain barrier permeability of puerarin and tetramethylpyrazine by activating adenosine receptors. Drug Deliv. 2018;25:1858–64. https://doi.org/10.1080/10717544.2018.1516005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hou T, Li X, Peng C. Borneol enhances the antidepressant effects of asiaticoside by promoting its distribution into the brain. Neurosci Lett. 2017;12:56–61. https://doi.org/10.1016/j.neulet.2017.02.068. 646.

    Article  CAS  Google Scholar 

  44. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2007;22:659–61. https://doi.org/10.1096/fj.07-9574LSF.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Clênia Cavalcante, Matheus Monteiro, and Sara Alves for the technical assistance during the execution of this work.

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001; and Universidade Federal da Paraíba and Paraíba State Research Foundation (FAPESQ, ID: 007/2019 FAPESQ-PB-MCT/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria S. França-Falcão.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luz, M.S., Gadelha, D.D.A., Andrade, K.J.S. et al. Borneol reduces sympathetic vasomotor hyperactivity and restores depressed baroreflex sensitivity in rats with renovascular hypertension. Hypertens Res 45, 802–813 (2022). https://doi.org/10.1038/s41440-022-00868-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00868-6

Keywords

Search

Quick links