Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serum uric acid level is associated with an increase in systolic blood pressure over time in female subjects: Linear mixed-effects model analyses

Abstract

Whether hyperuricemia is a true risk factor for elevated blood pressure (BP) is controversial, and the sex-specific effects of serum uric acid (SUA) on BP during a follow-up period remain unclear. We investigated whether the association of SUA level with systolic or diastolic BP during a 10-year period differs by sex in a Japanese general population of individuals who received annual health examinations (n = 28,990). After exclusion of subjects who had no BP or SUA data at baseline, a total of 22,994 subjects (male/female: 14,603/8391, age: 47 ± 11 years) were recruited. After adjustment for age; body mass index; BP; SUA level; use of drugs for hyperuricemia and hypertension; diagnosis of diabetes mellitus, dyslipidemia, and chronic kidney disease; family history of hypertension; habits of current smoking and alcohol consumption at baseline; the duration of the observation period; and the interaction between each covariate and the duration of the observation period indicated a significant association of SUA level with change in systolic or diastolic BP over time. There was a significant interaction between sex and SUA level for the change in systolic BP (P = 0.003) but not the change in diastolic BP (P = 0.081). The SUA level at baseline (per 1 mg/dL) was significantly associated with a change in systolic BP over time in females (estimate: 0.073 mmHg/year, P = 0.003) but not in males (estimate: 0.020 mmHg/year, P = 0.160). In conclusion, a high SUA level at baseline is significantly associated with an increase in systolic BP over time in female individuals but not in male individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Furuhashi M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab. 2020;319:E827–E34.

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Meng X, Timofeeva M, Tzoulaki I, Tsilidis KK, Ioannidis JP, et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017;357:j2376.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krishnan E, Kwoh CK, Schumacher HR, Kuller L. Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension 2007;49:298–303.

    Article  CAS  PubMed  Google Scholar 

  4. Nishio S, Maruyama Y, Sugano N, Hosoya T, Yokoo T, Kuriyama S. Gender interaction of uric acid in the development of hypertension. Clin Exp Hypertens. 2018;40:446–51.

    Article  CAS  PubMed  Google Scholar 

  5. Gaffo AL, Jacobs DR Jr, Sijtsma F, Lewis CE, Mikuls TR, Saag KG. Serum urate association with hypertension in young adults: analysis from the Coronary Artery Risk Development in Young Adults cohort. Ann Rheum Dis. 2013;72:1321–7.

    Article  PubMed  Google Scholar 

  6. Kuwabara M, Niwa K, Hisatome I, Nakagawa T, Roncal-Jimenez CA, Andres-Hernando A, et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year japanese cohort study. Hypertension 2017;69:1036–44.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, et al. Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS One. 2014;9:e114259.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63:102–10.

    Article  CAS  Google Scholar 

  9. Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32:1737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lv Q, Meng XF, He FF, Chen S, Su H, Xiong J, et al. High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One. 2013;8:e56864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Yang C, Zhao Y, Zeng X, Liu F, Fu P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: A systematic review and meta-analysis based on observational cohort studies. BMC Nephrol. 2014;15:122.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mori K, Furuhashi M, Tanaka M, Numata K, Hisasue T, Hanawa N, et al. U-shaped relationship between serum uric acid level and decline in renal function during a 10-year period in female subjects: BOREAS-CKD2. Hypertens Res. 2021;44:107–16.

    Article  PubMed  Google Scholar 

  13. Akasaka H, Yoshida H, Takizawa H, Hanawa N, Tobisawa T, Tanaka M, et al. The impact of elevation of serum uric acid level on the natural history of glomerular filtration rate (GFR) and its sex difference. Nephrol Dial Transpl. 2014;29:1932–9.

    Article  CAS  Google Scholar 

  14. Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis. 2004;44:642–50.

    Article  PubMed  Google Scholar 

  15. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2010;62:170–80.

    Google Scholar 

  16. De Vera MA, Rahman MM, Bhole V, Kopec JA, Choi HK. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis 2010;69:1162–4.

    Article  PubMed  Google Scholar 

  17. Huang H, Huang B, Li Y, Huang Y, Li J, Yao H, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16:15–24.

    Article  CAS  PubMed  Google Scholar 

  18. Barbieri L, Verdoia M, Schaffer A, Marino P, Suryapranata H, De Luca G, et al. Impact of sex on uric acid levels and its relationship with the extent of coronary artery disease: A single-centre study. Atherosclerosis 2015;241:241–8.

    Article  CAS  PubMed  Google Scholar 

  19. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001;38:1101–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67:237–47.

    Article  PubMed  Google Scholar 

  21. Johnson RJ, Rodriguez-Iturbe B, Kang DH, Feig DI, Herrera-Acosta J. A unifying pathway for essential hypertension. Am J Hypertens. 2005;18:431–40.

    Article  PubMed  Google Scholar 

  22. Joosten LAB, Crisan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol. 2020;16:75–86.

    Article  CAS  PubMed  Google Scholar 

  23. Jordan DM, Choi HK, Verbanck M, Topless R, Won HH, Nadkarni G, et al. No causal effects of serum urate levels on the risk of chronic kidney disease: A Mendelian randomization study. PLoS Med. 2019;16:e1002725.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pfister R, Barnes D, Luben R, Forouhi NG, Bochud M, Khaw KT, et al. No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach. Diabetologia 2011;54:2561–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3:523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson RJ, Merriman T, Lanaspa MA. Causal or noncausal relationship of uric acid with diabetes. Diabetes 2015;64:2720–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem. 2015;20:195–207.

    Article  CAS  PubMed  Google Scholar 

  28. Chaves FJ, Corella D, Blesa S, Mansego ML, Marin P, Portoles O, et al. Xanthine oxidoreductase polymorphisms: influence in blood pressure and oxidative stress levels. Pharmacogenet Genomics. 2007;17:589–96.

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Kamide K, Kokubo Y, Takiuchi S, Horio T, Matayoshi T, et al. Associations of hypertension and its complications with variations in the xanthine dehydrogenase gene. Hypertens Res. 2008;31:931–40.

    Article  CAS  PubMed  Google Scholar 

  30. Wu B, Hao Y, Shi J, Geng N, Li T, Chen Y, et al. Association between xanthine dehydrogenase tag single nucleotide polymorphisms and essential hypertension. Mol Med Rep. 2015;12:5685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scheepers LE, Wei FF, Stolarz-Skrzypek K, Malyutina S, Tikhonoff V, Thijs L, et al. Xanthine oxidase gene variants and their association with blood pressure and incident hypertension: a population study. J Hypertens. 2016;34:2147–54.

    Article  CAS  PubMed  Google Scholar 

  32. Stewart DJ, Langlois V, Noone D. Hyperuricemia and hypertension: links and risks. Integr Blood Press Control. 2019;12:43–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National health and nutrition examination survey. JAMA 2000;283:2404–10.

    Article  CAS  PubMed  Google Scholar 

  34. Mikkelsen WM, Dodge HJ, Valkenburg H. The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia: Tecumseh, Michigan 1959-1960. Am J Med. 1965;39:242–51.

    Article  CAS  PubMed  Google Scholar 

  35. Furuhashi M, Mori K, Tanaka M, Maeda T, Matsumoto M, Murase T, et al. Unexpected high plasma xanthine oxidoreductase activity in female subjects with low levels of uric acid. Endocr J. 2018;65:1083–92.

    Article  CAS  PubMed  Google Scholar 

  36. Hosoyamada M, Takiue Y, Shibasaki T, Saito H. The effect of testosterone upon the urate reabsorptive transport system in mouse kidney. Nucleosides Nucleotides Nucleic Acids. 2010;29:574–9.

    Article  CAS  PubMed  Google Scholar 

  37. Takiue Y, Hosoyamada M, Kimura M, Saito H. The effect of female hormones upon urate transport systems in the mouse kidney. Nucleosides Nucleotides Nucleic Acids. 2011;30:113–9.

    Article  CAS  PubMed  Google Scholar 

  38. Yahyaoui R, Esteva I, Haro-Mora JJ, Almaraz MC, Morcillo S, Rojo-Martinez G, et al. Effect of long-term administration of cross-sex hormone therapy on serum and urinary uric acid in transsexual persons. J Clin Endocrinol Metab. 2008;93:2230–3.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshitomi R, Fukui A, Nakayama M, Ura Y, Ikeda H, Oniki H, et al. Sex differences in the association between serum uric acid levels and cardiac hypertrophy in patients with chronic kidney disease. Hypertens Res. 2014;37:246–52.

    Article  CAS  PubMed  Google Scholar 

  40. Nagasawa Y, Yamamoto R, Shoji T, Shinzawa M, Hasuike Y, Nagatoya K, et al. Serum Uric Acid Level Predicts Progression of IgA Nephropathy in Females but Not in Males. PLoS One. 2016;11:e0160828.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Matsukuma Y, Masutani K, Tanaka S, Tsuchimoto A, Fujisaki K, Torisu K, et al. A J-shaped association between serum uric acid levels and poor renal survival in female patients with IgA nephropathy. Hypertens Res. 2017;40:291–7.

    Article  CAS  PubMed  Google Scholar 

  42. Oh TR, Choi HS, Kim CS, Kang KP, Kwon YJ, Kim SG, et al. The effects of hyperuricemia on the prognosis of IgA nephropathy are more potent in females. J Clin Med. 2020;9:176.

    Article  CAS  PubMed Central  Google Scholar 

  43. Oh TR, Choi HS, Kim CS, Ryu DR, Park SH, Ahn SY, et al. Serum uric acid is associated with renal prognosis of lupus nephritis in women but not in men. J Clin Med. 2020;9:773.

    Article  CAS  PubMed Central  Google Scholar 

  44. Takahashi S, Tanaka M, Furuhashi M, Moniwa N, Koyama M, Higashiura Y, et al. Fatty liver index is independently associated with deterioration of renal function during a 10-year period in healthy subjects. Sci Rep. 2021;11:8606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higashiura Y, Tanaka M, Furuhashi M, Koyama M, Ohnishi H, Numata K, et al. Low urine pH predicts new onset of diabetes mellitus during a 10-year period in men: BOREAS-DM1 study. J Diabetes Investig. 2020;11:1490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  47. American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2017;40:S11–S24.

    Article  Google Scholar 

  48. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National kidney foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139:137–47.

    Article  PubMed  Google Scholar 

  49. Leffondre K, Boucquemont J, Tripepi G, Stel VS, Heinze G, Dunkler D. Analysis of risk factors associated with renal function trajectory over time: a comparison of different statistical approaches. Nephrol Dial Transpl. 2015;30:1237–43.

    Article  CAS  Google Scholar 

  50. Janmaat CJ, van Diepen M, Tsonaka R, Jager KJ, Zoccali C, Dekker FW. Pitfalls of linear regression for estimating slopes over time and how to avoid them by using linear mixed-effects models. Nephrol Dial Transpl. 2019;34:561–6.

    Article  Google Scholar 

  51. Shieh G. Clarifying the role of mean centring in multicollinearity of interaction effects. Br J Math Stat Psychol. 2011;64:462–77.

    Article  PubMed  Google Scholar 

  52. Franklin SS, Gustin WT, Wong ND, Larson MG, Weber MA, Kannel WB, et al. Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 1997;96:308–15.

    Article  CAS  PubMed  Google Scholar 

  53. Kohagura K, Kochi M, Miyagi T, Kinjyo T, Maehara Y, Nagahama K, et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens Res. 2013;36:43–9.

    Article  CAS  PubMed  Google Scholar 

  54. Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437–42.

    Article  CAS  PubMed  Google Scholar 

  55. Doring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008;40:430–6.

    Article  PubMed  Google Scholar 

  56. Korniluk A, Koper-Lenkiewicz OM, Kaminska J, Kemona H, Dymicka-Piekarska V. Mean Platelet Volume (MPV): new perspectives for an old marker in the course and prognosis of inflammatory conditions. Mediators Inflamm. 2019;2019:9213074.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Coban E, Yazicioglu G, Berkant Avci A, Akcit F. The mean platelet volume in patients with essential and white coat hypertension. Platelets 2005;16:435–8.

    Article  CAS  PubMed  Google Scholar 

  58. Kaya MG, Yarlioglues M, Gunebakmaz O, Gunturk E, Inanc T, Dogan A, et al. Platelet activation and inflammatory response in patients with non-dipper hypertension. Atherosclerosis 2010;209:278–82.

    Article  CAS  PubMed  Google Scholar 

  59. Shimodaira M, Niwa T, Nakajima K, Kobayashi M, Hanyu N, Nakayama T. Gender differences in the relationship between serum uric acid and mean platelet volume in a Japanese general population. Platelets 2014;25:202–6.

    Article  CAS  PubMed  Google Scholar 

  60. Furuhashi M, Matsumoto M, Tanaka M, Moniwa N, Murase T, Nakamura T, et al. Plasma Xanthine Oxidoreductase activity as a novel biomarker of metabolic disorders in a general population. Circ J. 2018;82:1892–9.

    Article  CAS  PubMed  Google Scholar 

  61. Furuhashi M, Matsumoto M, Murase T, Nakamura T, Higashiura Y, Koyama M, et al. Independent links between plasma xanthine oxidoreductase activity and levels of adipokines. J Diabetes Investig. 2019;10:1059–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Furuhashi M, Koyama M, Matsumoto M, Murase T, Nakamura T, Higashiura Y, et al. Annual change in plasma xanthine oxidoreductase activity is associated with changes in liver enzymes and body weight. Endocr J. 2019;66:777–86.

    Article  CAS  PubMed  Google Scholar 

  63. Furuhashi M, Koyama M, Higashiura Y, Murase T, Nakamura T, Matsumoto M, et al. Differential regulation of hypoxanthine and xanthine by obesity in a general population. J Diabetes Investig. 2020;11:878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida S, Kurajoh M, Fukumoto S, Murase T, Nakamura T, Yoshida H, et al. Association of plasma xanthine oxidoreductase activity with blood pressure affected by oxidative stress level: MedCity21 health examination registry. Sci Rep. 2020;10:4437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Furuhashi M, Higashiura Y, Koyama M, Tanaka M, Murase T, Nakamura T, et al. Independent association of plasma xanthine oxidoreductase activity with hypertension in nondiabetic subjects not using medication. Hypertens Res. 2021;44:1213–20.

    Article  CAS  PubMed  Google Scholar 

  66. Pineda C, Soto-Fajardo C, Mendoza J, Gutierrez J, Sandoval H. Hypouricemia: what the practicing rheumatologist should know about this condition. Clin Rheumatol. 2020;39:135–47.

    Article  PubMed  Google Scholar 

  67. Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi J, Nakanishi T, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35:391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Keita Numata and Takashi Hisasue for data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Furuhashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, K., Furuhashi, M., Tanaka, M. et al. Serum uric acid level is associated with an increase in systolic blood pressure over time in female subjects: Linear mixed-effects model analyses. Hypertens Res 45, 344–353 (2022). https://doi.org/10.1038/s41440-021-00792-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00792-1

Keywords

This article is cited by

Search

Quick links