Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Series - New Horizons in the Treatment of Hypertension

Hypertension in diabetes care: emerging roles of recent hypoglycemic agents

Abstract

Patients with type 2 diabetes (T2D) frequently have multiple cardiovascular, metabolic, and renal comorbidities, such as hypertension, dyslipidemia, hyperuricemia, chronic kidney disease, and heart failure. Accordingly, this patient population often requires polypharmacy, which is associated with an increased risk of drug-drug interactions, poor adherence, and even adverse outcomes. Accumulating evidence on newer hypoglycemic agents, such as glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, has highlighted the marked improvements in cardiovascular and renal outcomes associated with the off-target benefits for relevant comorbidities, including hypertension. These classes of hypoglycemic agents are unique, as they achieve consistently modest but significant reductions in systolic and diastolic blood pressure (BP), an effect that has not been targeted and observed with conventional hypoglycemic agents. In addition to this BP-lowering effect, these agents also have multifaceted beneficial impacts on other cardiometabolic and renal parameters, which appear to be helpful for providing an important comprehensive therapeutic approach to improve the prognosis in patients with T2D. The clinical advantages of these agents may reduce the dose and number of concomitant medications used to treat T2D and related comorbidities. These positive spillover effects may also enhance the clinical use of agents to achieve better diabetes care. As a consequence, the clinical significance of these hypoglycemic agents now extends beyond their hypoglycemic effects, thereby providing a new-normal strategy to use in an evidence-based, patient-centric approach to diabetes care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  PubMed  Google Scholar 

  2. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  CAS  PubMed  Google Scholar 

  3. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  CAS  PubMed  Google Scholar 

  4. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  5. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  PubMed  Google Scholar 

  6. Ueki K, Sasako T, Okazaki Y, Kato M, Okahata S, Katsuyama H, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrino. 2017;5:951–64.

    Article  Google Scholar 

  7. Rodriguez-Gutierrez R, Gonzalez-Gonzalez JG, Zuñiga-Hernandez JA, McCoy RG. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ. 2019;367:l5887.

    Article  PubMed  Google Scholar 

  8. Tanaka A, Node K. Evidence-based and tailored medication in type 2 diabetes: a pathway learned from clinical trials. Cardiovasc Diabetol. 2019;18:19.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wright AK, Suarez-Ortegon MF, Read SH, Kontopantelis E, Buchan I, Emsley R, et al. Risk Factor Control and Cardiovascular Event Risk in People With Type 2 Diabetes in Primary and Secondary Prevention Settings. Circulation. 2020;142:1925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Musawe L, Martins AP, Raposo JF, Torre C. The association between polypharmacy and adverse health consequences in elderly type 2 diabetes mellitus patients; a systematic review and meta-analysis. Diabetes Res Clin Pr. 2019;155:107804.

    Article  Google Scholar 

  11. van Oort S, Rutters F, Warlé-van Herwaarden MF, Schram MT, Stehouwer CD, Tack CJ, et al. Characteristics associated with polypharmacy in people with type 2 diabetes: the Dutch Diabetes Pearl cohort. Diabet Med. 2020;38:e14406.

  12. Dobrică EC, Găman MA, Cozma MA, Bratu OG, Pantea Stoian A, Diaconu CC. Polypharmacy in Type 2 Diabetes Mellitus: Insights from an Internal Medicine Department. Med (Kaunas, Lith). 2019;55:436.

    Google Scholar 

  13. Al-Musawe L, Torre C, Guerreiro JP, Rodrigues AT, Raposo JF, Mota-Filipe H, et al. Polypharmacy, potentially serious clinically relevant drug-drug interactions, and inappropriate medicines in elderly people with type 2 diabetes and their impact on quality of life. Pharm Res Perspect. 2020;8:e00621.

    Article  CAS  Google Scholar 

  14. Saito T, Ohmura H, Nojiri S, Daida H. Impact of sitagliptin combination therapy and hypoglycemia in Japanese patients with type 2 diabetes: a multi-center retrospective observational cohort study. J Pharm Health Care Sci. 2020;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lipska KJ, Krumholz H, Soones T, Lee SJ. Polypharmacy in the Aging Patient: a Review of Glycemic Control in Older Adults With Type 2 Diabetes. JAMA. 2016;315:1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrino. 2019;7:776–85.

    Article  CAS  Google Scholar 

  17. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–39.

    Article  CAS  PubMed  Google Scholar 

  18. McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes: a Meta-analysis. JAMA Cardiol. 2021;6:148–58.

    Article  PubMed  Google Scholar 

  19. Palmer SC, Tendal B, Mustafa RA, Vandvik PO, Li S, Hao Q, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;372:m4573.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giugliano D, Longo M, Scappaticcio L, Caruso P, Esposito K. Sodium-glucose transporter-2 inhibitors for prevention and treatment of cardiorenal complications of type 2 diabetes. Cardiovasc Diabetol. 2021;20:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka A, Node K. Emerging roles of sodium-glucose cotransporter 2 inhibitors in cardiology. J Cardiol. 2017;69:501–7.

    Article  PubMed  Google Scholar 

  22. Tanaka A, Node K. Clinical application of glucagon-like peptide-1 receptor agonists in cardiovascular disease: lessons from recent clinical cardiovascular outcomes trials. Cardiovasc Diabetol. 2018;17:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation. 2016;134:752–72.

    Article  CAS  PubMed  Google Scholar 

  24. Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: beyond the glucose-lowering effect. Cardiovasc Diabetol. 2020;19:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.

    Article  CAS  PubMed  Google Scholar 

  26. Kengne AP, Patel A, Barzi F, Jamrozik K, Lam TH, Ueshima H, et al. Systolic blood pressure, diabetes and the risk of cardiovascular diseases in the Asia-Pacific region. J Hypertens. 2007;25:1205–13.

    Article  CAS  PubMed  Google Scholar 

  27. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313:603–15.

    Article  PubMed  CAS  Google Scholar 

  28. Briasoulis A, Al Dhaybi O, Bakris GL. SGLT2 Inhibitors and Mechanisms of Hypertension. Curr Cardiol Rep. 2018;20:1.

    Article  PubMed  Google Scholar 

  29. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317:703–13.

  31. Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  PubMed  CAS  Google Scholar 

  32. Margolis KL, O’Connor PJ, Morgan TM, Buse JB, Cohen RM, Cushman WC, et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care. 2014;37:1721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bangalore S, Kumar S, Lobach I, Messerli FH. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123:2799–810.

    Article  CAS  PubMed  Google Scholar 

  34. Tsujimoto T, Kajio H. Benefits of Intensive Blood Pressure Treatment in Patients With Type 2 Diabetes Mellitus Receiving Standard but Not Intensive Glycemic Control. Hypertension. 2018;72:323–30.

    Article  CAS  PubMed  Google Scholar 

  35. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  36. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000;355:253–9.

  37. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kurokawa K, Chan JC, Cooper ME, Keane WF, Shahinfar S, Zhang Z. Renin angiotensin aldosterone system blockade and renal disease in patients with type 2 diabetes: a subanalysis of Japanese patients from the RENAAL study. Clin Exp Nephrol. 2006;10:193–200.

    Article  CAS  PubMed  Google Scholar 

  39. Bakris GL, Toto RD, McCullough PA, Rocha R, Purkayastha D, Davis P. Effects of different ACE inhibitor combinations on albuminuria: results of the GUARD study. Kidney Int. 2008;73:1303–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi M, Yamazaki K, Hirao K, Oishi M, Kanatsuka A, Yamauchi M, et al. The status of diabetes control and antidiabetic drug therapy in Japan-a cross-sectional survey of 17,000 patients with diabetes mellitus (JDDM 1). Diabetes Res Clin Pr. 2006;73:198–204.

    Article  Google Scholar 

  41. Pagidipati NJ, Navar AM, Pieper KS, Green JB, Bethel MA, Armstrong PW, et al. Secondary Prevention of Cardiovascular Disease in Patients With Type 2 Diabetes Mellitus: international Insights From the TECOS Trial (Trial Evaluating Cardiovascular Outcomes With Sitagliptin). Circulation. 2017;136:1193–203.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tanaka A, Shimabukuro M, Machii N, Teragawa H, Okada Y, Shima KR, et al. Effect of Empagliflozin on Endothelial Function in Patients With Type 2 Diabetes and Cardiovascular Disease: results from the Multicenter, Randomized, Placebo-Controlled, Double-Blind EMBLEM Trial. Diabetes Care. 2019;42:e159–e161.

    Article  CAS  PubMed  Google Scholar 

  43. Oyama J, Murohara T, Kitakaze M, Ishizu T, Sato Y, Kitagawa K, et al. The Effect of Sitagliptin on Carotid Artery Atherosclerosis in Type 2 Diabetes: the PROLOGUE Randomized Controlled Trial. PLoS Med. 2016;13:e1002051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Navar AM, Gallup DS, Lokhnygina Y, Green JB, McGuire DK, Armstrong PW, et al. Hypertension Control in Adults With Diabetes Mellitus and Recurrent Cardiovascular Events: Global Results From the Trial Evaluating Cardiovascular Outcomes With Sitagliptin. Hypertension. 2017;70:907–14.

    Article  CAS  PubMed  Google Scholar 

  45. Shen Y, Dai Y, Wang XQ, Zhang RY, Lu L, Ding FH, et al. Searching for optimal blood pressure targets in type 2 diabetic patients with coronary artery disease. Cardiovasc Diabetol. 2019;18:160.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Clarke GD, Solis-Herrera C, Molina-Wilkins M, Martinez S, Merovci A, Cersosimo E, et al. Pioglitazone Improves Left Ventricular Diastolic Function in Subjects With Diabetes. Diabetes Care. 2017;40:1530–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saremi A, Schwenke DC, Buchanan TA, Hodis HN, Mack WJ, Banerji M, et al. Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013;33:393–9.

    Article  CAS  PubMed  Google Scholar 

  48. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73.

    Article  CAS  PubMed  Google Scholar 

  49. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA. 2006;296:2572–81.

    Article  CAS  PubMed  Google Scholar 

  50. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  51. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. 2004;25:10–16.

    Article  CAS  PubMed  Google Scholar 

  52. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290:486–94.

    Article  CAS  PubMed  Google Scholar 

  53. McCarty MF, DiNicolantonio JJ. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1. Open Heart. 2015;2:e000205.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mita T, Katakami N, Yoshii H, Onuma T, Kaneto H, Osonoi T, et al. Alogliptin, a Dipeptidyl Peptidase 4 Inhibitor, Prevents the Progression of Carotid Atherosclerosis in Patients With Type 2 Diabetes: the Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A). Diabetes Care. 2016;39:139–48.

    Article  CAS  PubMed  Google Scholar 

  55. Mita T, Katakami N, Shiraiwa T, Yoshii H, Onuma T, Kuribayashi N, et al. Sitagliptin Attenuates the Progression of Carotid Intima-Media Thickening in Insulin-Treated Patients With Type 2 Diabetes: the Sitagliptin Preventive Study of Intima-Media Thickness Evaluation (SPIKE): A Randomized Controlled Trial. Diabetes Care. 2016;39:455–64.

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka A, Yoshida H, Nanasato M, Oyama JI, Ishizu T, Ajioka M, et al. Sitagliptin on carotid intima-media thickness in type 2 diabetes patients receiving primary or secondary prevention of cardiovascular disease: a subgroup analysis of the PROLOGUE study. Int J Cardiol. 2018;271:331–5.

    Article  PubMed  Google Scholar 

  57. Akita K, Isoda K, Shimada K, Daida H. Dipeptidyl-peptidase-4 inhibitor, alogliptin, attenuates arterial inflammation and neointimal formation after injury in low-density lipoprotein (LDL) receptor-deficient mice. J Am Heart Assoc. 2015;4:e001469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Matsubara J, Sugiyama S, Sugamura K, Nakamura T, Fujiwara Y, Akiyama E, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol. 2012;59:265–76.

    Article  CAS  PubMed  Google Scholar 

  59. Ta NN, Schuyler CA, Li Y, Lopes-Virella MF, Huang Y. DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice. J Cardiovasc Pharm. 2011;58:157–66.

    Article  CAS  Google Scholar 

  60. Jackson EK, Mi Z, Tofovic SP, Gillespie DG. Effect of dipeptidyl peptidase 4 inhibition on arterial blood pressure is context dependent. Hypertension. 2015;65:238–49.

    Article  CAS  PubMed  Google Scholar 

  61. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117:2340–50.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, Zhao Q. Effects of dipeptidyl peptidase-4 inhibitors on blood pressure in patients with type 2 diabetes: a systematic review and meta-analysis. J Hypertens. 2016;34:167–75.

    Article  CAS  PubMed  Google Scholar 

  63. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation. 2017;136:849–70.

    Article  CAS  PubMed  Google Scholar 

  64. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Drucker DJ. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab. 2016;24:15–30.

    Article  CAS  PubMed  Google Scholar 

  66. Martins FL, Bailey MA, Girardi ACC. Endogenous Activation of Glucagon-Like Peptide-1 Receptor Contributes to Blood Pressure Control: Role of Proximal Tubule Na(+)/H(+) Exchanger Isoform 3, Renal Angiotensin II, and Insulin Sensitivity. Hypertension. 2020;76:839–48.

    Article  CAS  PubMed  Google Scholar 

  67. Sun F, Wu S, Guo S, Yu K, Yang Z, Li L. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pr. 2015;110:26–37.

    Article  CAS  Google Scholar 

  68. Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15:737–49.

    Article  CAS  PubMed  Google Scholar 

  69. Holst JJ, Deacon CF, Vilsbøll T, Krarup T, Madsbad S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med. 2008;14:161–8.

    Article  CAS  PubMed  Google Scholar 

  70. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8:262–.e9.

    Article  CAS  PubMed  Google Scholar 

  71. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials With 22 528 Patients. J Am Heart Assoc. 2017;6:e004007.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: a Systematic Review and Meta-Analysis. J Am Heart Assoc. 2017;6:e005686.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. 24-Hour Blood Pressure-Lowering Effect of an SGLT-2 Inhibitor in Patients with Diabetes and Uncontrolled Nocturnal Hypertension: results from the Randomized, Placebo-Controlled SACRA Study. Circulation. 2018;139:2089–97.

    Article  PubMed Central  CAS  Google Scholar 

  74. Kario K, Ferdinand KC, O’Keefe JH. Control of 24-hour blood pressure with SGLT2 inhibitors to prevent cardiovascular disease. Prog Cardiovasc Dis. 2020;63:249–62.

    Article  PubMed  Google Scholar 

  75. Okada K, Hoshide S, Kato M, Kanegae H, Ishibashi S, Kario K. Safety and efficacy of empagliflozin in elderly Japanese patients with type 2 diabetes mellitus: a post hoc analysis of data from the SACRA study. J Clin Hypertens (Greenwich). 2020. https://doi.org/10.1111/jch.14131. Epub ahead of print.

  76. Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, et al. Impact of Empagliflozin on Blood Pressure in Patients With Type 2 Diabetes Mellitus and Hypertension by Background Antihypertensive Medication. Hypertension. 2016;68:1355–64.

    Article  CAS  PubMed  Google Scholar 

  77. Lingvay I, Catarig AM, Frias JP, Kumar H, Lausvig NL, le Roux CW, et al. Efficacy and safety of once-weekly semaglutide versus daily canagliflozin as add-on to metformin in patients with type 2 diabetes (SUSTAIN 8): a double-blind, phase 3b, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7:834–44.

    Article  CAS  PubMed  Google Scholar 

  78. Sanidas EA, Papadopoulos DP, Hatziagelaki E, Grassos C, Velliou M, Barbetseas J. Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors Across the Spectrum of Hypertension. Am J Hypertens. 2020;33:207–13.

    Article  CAS  PubMed  Google Scholar 

  79. Herat LY, Matthews VB, Magno AL, Kiuchi MG, Carnagarin R, Schlaich MP. An evaluation of empagliflozin and it’s applicability to hypertension as a therapeutic option. Expert Opin Pharmacother. 2020;21:1157–66.

    Article  CAS  PubMed  Google Scholar 

  80. Maliha G, Townsend RR. SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens. 2015;9:48–53.

    Article  CAS  PubMed  Google Scholar 

  81. Kawasoe S, Maruguchi Y, Kajiya S, Uenomachi H, Miyata M, Kawasoe M, et al. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharm Toxicol. 2017;18:23.

    Article  CAS  Google Scholar 

  82. Scheen AJ. Effect of SGLT2 Inhibitors on the Sympathetic Nervous System and Blood Pressure. Curr Cardiol Rep. 2019;21:70.

    Article  PubMed  Google Scholar 

  83. Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation. 2017;136:1643–58.

    Article  CAS  PubMed  Google Scholar 

  84. Yoshikawa T, Kishi T, Shinohara K, Takesue K, Shibata R, Sonoda N, et al. Arterial pressure lability is improved by sodium-glucose cotransporter 2 inhibitor in streptozotocin-induced diabetic rats. Hypertens Res. 2017;40:646–51.

    Article  CAS  PubMed  Google Scholar 

  85. Lee MMY, Petrie MC, McMurray JJV, Sattar N. How Do SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors and GLP-1 (Glucagon-Like Peptide-1) Receptor Agonists Reduce Cardiovascular Outcomes?: Completed and Ongoing Mechanistic Trials. Arterioscler Thromb Vasc Biol. 2020;40:506–22.

    Article  CAS  PubMed  Google Scholar 

  86. Januzzi JL Jr, Xu J, Li J, Shaw W, Oh R, Pfeifer M, et al. Effects of Canagliflozin on Amino-Terminal Pro-B-Type Natriuretic Peptide: Implications for Cardiovascular Risk Reduction. J Am Coll Cardiol. 2020;76:2076–85.

    Article  CAS  PubMed  Google Scholar 

  87. Buse JB, Bain SC, Mann JFE, Nauck MA, Nissen SE, Pocock S, et al. Cardiovascular Risk Reduction With Liraglutide: an Exploratory Mediation Analysis of the LEADER Trial. Diabetes Care. 2020;43:1546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care. 2018;41:356–63.

    Article  CAS  PubMed  Google Scholar 

  89. Qiu M, Ding LL, Zhang M, Lin JH, Wei XB, Huang H. GLP-1RAs and SGLT2is Reduce Cardiovascular Events Independent of Reductions of Systolic Blood Pressure and Body Weight: a Meta-Analysis with Meta-Regression. Diabetes Ther. 2020;11:2429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tanaka A, Node K. How should we monitor the cardiovascular benefit of sodium-glucose cotransporter 2 inhibition? Cardiovasc Diabetol. 2020;19:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Horii T, Iwasawa M, Kabeya Y, Atuda K. Polypharmacy and oral antidiabetic treatment for type 2 diabetes characterised by drug class and patient characteristics: a Japanese database analysis. Sci Rep. 2019;9:12992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Li J, Fagbote CO, Zhuo M, Hawley CE, Paik JM. Sodium-glucose cotransporter 2 inhibitors for diabetic kidney disease: a primer for deprescribing. Clin Kidney J. 2019;12:620–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Tanaka.

Ethics declarations

Conflict of interest

AT has received honoraria from Boehringer Ingelheim and research funding from GlaxoSmithKline. KN has received research grants from Asahi Kasei, Astellas, Bayer, Boehringer Ingelheim, Mitsubishi Tanabe, Teijin, and Terumo; scholarships from Astellas, Bayer, Bristol-Myers Squibb, Daiichi Sankyo, Daiichi Sankyo Healthcare, Takeda, and Teijin; and personal fees from Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo Healthcare, Eli Lilly, Kowa, Mitsubishi Tanabe, MSD, Novartis, Ono, Takeda, and Teijin.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, A., Node, K. Hypertension in diabetes care: emerging roles of recent hypoglycemic agents. Hypertens Res 44, 897–905 (2021). https://doi.org/10.1038/s41440-021-00665-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00665-7

Keywords

This article is cited by

Search

Quick links