Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pulmonary arterial hypertension induces the release of circulating extracellular vesicles with oxidative content and alters redox and mitochondrial homeostasis in the brains of rats

Abstract

Pulmonary arterial hypertension (PAH) is characterized by increased resistance of the pulmonary vasculature and afterload imposed on the right ventricle (RV). Two major contributors to the worsening of this disease are oxidative stress and mitochondrial impairment. This study aimed to explore the effects of monocrotaline (MCT)-induced PAH on redox and mitochondrial homeostasis in the RV and brain and how circulating extracellular vesicle (EV) signaling is related to these phenomena. Wistar rats were divided into control and MCT groups (60 mg/kg, intraperitoneal), and EVs were isolated from blood on the day of euthanasia (21 days after MCT injections). There was an oxidative imbalance in the RV, brain, and EVs of MCT rats. PAH impaired mitochondrial function in the RV, as seen by a decrease in the activities of mitochondrial complex II and citrate synthase and manganese superoxide dismutase (MnSOD) protein expression, but this function was preserved in the brain. The key regulators of mitochondrial biogenesis, namely, proliferator-activated receptor gamma coactivator 1-alpha and sirtuin 1, were poorly expressed in the EVs of MCT rats, and this result was positively correlated with MnSOD expression in the RV and negatively correlated with MnSOD expression in the brain. Based on these findings, we can conclude that the RV is severely impacted by the development of PAH, but this pathological injury may signal the release of circulating EVs that communicate with different organs, such as the brain, helping to prevent further damage through the upregulation of proteins involved in redox and mitochondrial function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feng W, Wang J, Yan X, Zhai C, Shi W, Wang Q, et al. Paclitaxel alleviates monocrotaline-induced pulmonary arterial hypertension via inhibition of FoxO1-mediated autophagy. Naunyn Schmiedebergs Arch Pharmacol. 2019. https://doi.org/10.1007/s00210-019-01615-4.

  2. Li B, He W, Ye L, Zhu Y, Tian Y, Chen L, et al. Targeted delivery of sildenafil for inhibiting pulmonary vascular remodeling. Hypertension. 2019. https://doi.org/10.1161/HYPERTENSIONAHA.118.11932.

  3. Wilson DW, Segall HJ, Pan LCW, Dunston SK. Progressive inflammatory and structural changes in the pulmonary vasculature of monocrotaline-treated rats. Microvasc Res. 1989;38:57–80. https://doi.org/10.1016/0026-2862(89)90017-4

    Article  CAS  PubMed  Google Scholar 

  4. Bashkatova V, Alam M, Vanin A, Schmidt WJ. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp Neurol. 2004;186:235–41. https://doi.org/10.1016/j.expneurol.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  5. Bello-Klein A, Mancardi D, Araujo AS, Schenkel PC, Turck P, de Lima Seolin BG. Role of redox homeostasis and inflammation in the pathogenesis of pulmonary arterial hypertension. Curr Med Chem. 2018;25:1340–51. https://doi.org/10.2174/0929867325666171226114838

    Article  CAS  PubMed  Google Scholar 

  6. Sies H. Role of reactive oxygen species in biological processes. Klin Wochenschr. 1991;69:965–8.

    Article  CAS  Google Scholar 

  7. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049 https://doi.org/10.1155/2016/1245049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim HK, Nilius B, Kim N, Ko KS, Rhee BD, Han J. Cardiac response to oxidative stress induced by mitochondrial dysfunction. Rev Physiol Biochem Pharmacol. 2016;170:101–27.

    Article  CAS  Google Scholar 

  9. Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med. 2010;88:1011–20. https://doi.org/10.1007/s00109-010-0679-1

    Article  CAS  PubMed  Google Scholar 

  10. Paulin R, Michelakis ED. The metabolic theory of pulmonary arterial hypertension. Circ Res. 2014;115:148–64. https://doi.org/10.1161/CIRCRESAHA.115.301130

    Article  CAS  PubMed  Google Scholar 

  11. Hogan SE, Rodriguez Salazar MP, Cheadle J, Glenn R, Medrano C, Petersen TH, et al. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Physiol Cell Mol Physiol. 2019;316:L723–37. https://doi.org/10.1152/ajplung.00058.2018

    Article  CAS  Google Scholar 

  12. Patel M. Targeting oxidative stress in central nervous system disorders. Trends Pharm Sci. 2016;37:768–78. https://doi.org/10.1016/j.tips.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  13. Franco R, Navarro G, Martínez-Pinilla E. Antioxidant defense mechanisms in erythrocytes and in the central nervous system. Antioxidants. 2019;8:46 https://doi.org/10.3390/antiox8020046

    Article  CAS  PubMed Central  Google Scholar 

  14. Emam SE, Ando H, Lila ASA, Shimizu T, Okuhira K, Ishima Y, et al. Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways. Sci Rep. 2018;8:14493 https://doi.org/10.1038/s41598-018-32861-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res. 2016;110:319–30. https://doi.org/10.1093/cvr/cvw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singal PK, Khaper N, Farahmand F, Belló-Klein A. Oxidative stress in congestive heart failure. Curr Cardiol Rep. 2000;2:206–11. https://doi.org/10.1007/s11886-000-0070-x

    Article  CAS  PubMed  Google Scholar 

  17. Ludke ARL, Mosele F, Caron-Lienert R, Ribeiro MF, Partata W, Llesuy S, et al. Modulation of monocrotaline-induced Cor pulmonale by grape juice. J Cardiovasc Pharm. 2010;55:89–95. https://doi.org/10.1097/FJC.0b013e3181c87a9d

    Article  CAS  Google Scholar 

  18. Koskenvuo JW, Mirsky R, Zhang Y, Angeli FS, Jahn S, Alastalo T-P, et al. A comparison of echocardiography to invasive measurement in the evaluation of pulmonary arterial hypertension in a rat model. Int J Cardiovasc Imaging. 2010;26:509–18. https://doi.org/10.1007/s10554-010-9596-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fulton RM, Hutchinson EC, Jones AM. Ventricular weight in cardiac hypertrophy. Br Heart J. 1952;14:413–20. https://doi.org/10.1136/hrt.14.3.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farahmand F, Hill MF, Singal PK. Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem. 2004;260:21–29. https://doi.org/10.1023/B:MCBI.0000026047.48534.50

    Article  PubMed  Google Scholar 

  21. Llesuy SF, Milei J, Molina H, Boveris A, Milei S. Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4’-epiadriamycin in mice. Tumori. 1985;71:523–30.

    Article  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    Article  CAS  Google Scholar 

  23. Davidson SM, Takov K, Yellon DM. Exosomes and cardiovascular protection. Cardiovasc Drugs Ther. 2017;31:77–86. https://doi.org/10.1007/s10557-016-6698-6

    Article  CAS  PubMed  Google Scholar 

  24. Van Der Pol E, Hoekstra AG, Sturk A, Otto C, Van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8:2596–607.

    Article  Google Scholar 

  25. Chen S, Datta-Chaudhuri A, Deme P, Dickens A, Dastgheyb R, Bhargava P, et al. Lipidomic characterization of extracellular vesicles in human serum. J Circ Biomarkers. 2019;8. https://doi.org/10.1177/1849454419879848

  26. De Gassart A, Géminard C, Février B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102:4336–44. https://doi.org/10.1182/blood-2003-03-0871

    Article  CAS  PubMed  Google Scholar 

  27. Araujo ASR, Ribeiro MFM, Enzveiler A, Schenkel P, Fernandes TRG, Partata WA, et al. Myocardial antioxidant enzyme activities and concentration and glutathione metabolism in experimental hyperthyroidism. Mol Cell Endocrinol. 2006;249:133–9. https://doi.org/10.1016/j.mce.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  28. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  Google Scholar 

  29. Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A, Martínez-Augustin O, et al. Reversible Ponceau staining as a loading control alternative to actin in western blots. Anal Biochem. 2010;401:318–20. https://doi.org/10.1016/j.ab.2010.02.036

    Article  CAS  PubMed  Google Scholar 

  30. Lebel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5:227–31. https://doi.org/10.1021/tx00026a012

    Article  CAS  PubMed  Google Scholar 

  31. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM-E, Clark SE, et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281:35137–46. https://doi.org/10.1074/jbc.M601320200

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10:93–100.

    Article  CAS  Google Scholar 

  33. Marklund SL. Product of extracellular-superoxide dismutase catalysis. FEBS Lett. 1985;184:237–9.

    Article  CAS  Google Scholar 

  34. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  Google Scholar 

  35. Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–20. https://doi.org/10.1016/S0076-6879(84)05015-1

    Article  PubMed  Google Scholar 

  36. Akerboom TP, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–82.

    Article  CAS  Google Scholar 

  37. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192–205.

    Article  CAS  Google Scholar 

  38. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, et al. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta. 1985;153:23–36.

    Article  CAS  Google Scholar 

  39. Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228:35–51. https://doi.org/10.1016/0009-8981(94)90055-8

    Article  CAS  PubMed  Google Scholar 

  40. Shepherd D, Garland PB. Citrate synthase from rat liver: [EC 4.1.3.7 Citrate oxaloacetage-lyase (CoA-acetylating)]. Methods Enzymol. 1969;13:11–16. https://doi.org/10.1016/0076-6879(69)13006-2

    Article  CAS  Google Scholar 

  41. Leong SF, Clark JB. Regional development of glutamate dehydrogenase in the at brain. J Neurochem. 1984;43:106–11. https://doi.org/10.1111/j.1471-4159.1984.tb06684.x

    Article  CAS  PubMed  Google Scholar 

  42. Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014;12:614–27. https://doi.org/10.1111/jth.12554

    Article  CAS  PubMed  Google Scholar 

  43. Zhang M, Chang Z, Zhao F, Zhang P, Hao Y-J, Yan L, et al. Protective effects of 18β-glycyrrhetinic acid on monocrotaline-induced pulmonary arterial hypertension in rats. Front Pharm. 2019;10:13.

    Article  Google Scholar 

  44. Redout E, Wagner M, Zuidwijk M, Boer C, Musters R, Vanhardeveld C, et al. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res. 2007;75:770–81.

    Article  CAS  Google Scholar 

  45. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490.

    Article  CAS  Google Scholar 

  46. Katengua-Thamahane E, Szeiffova Bacova B, Bernatova I, Sykora M, Knezl V, Van Rooyen J, et al. Effects of red palm oil on myocardial antioxidant enzymes, nitric oxide synthase and heart function in spontaneously hypertensive rats. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18112476

  47. McLeay Y, Stannard S, Houltham S, Starck C. Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation. J Int Soc Sports Nutr. 2017;14:12 https://doi.org/10.1186/s12970-017-0168-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, et al. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid Redox Signal. 2017;27:989–1010. https://doi.org/10.1089/ars.2016.6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rae CD, Williams SR. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem. 2017;529:127–43. https://doi.org/10.1016/j.ab.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  50. Rafikova O, Srivastava A, Desai AA, Rafikov R, Tofovic SP. Recurrent inhibition of mitochondrial complex III induces chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respir Res. 2018;19:69 https://doi.org/10.1186/s12931-018-0776-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lobo-Jarne T, Ugalde C. Respiratory chain supercomplexes: Structures, function and biogenesis. Semin Cell Dev Biol. 2018;76:179–90. https://doi.org/10.1016/j.semcdb.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  52. Grings M, Moura AP, Parmeggiani B, Motta MM, Boldrini RM, August PM, et al. Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats. Biochim Biophys Acta Mol Basis Dis. 2016;1862:2063–74. https://doi.org/10.1016/j.bbadis.2016.08.007

    Article  CAS  Google Scholar 

  53. Baldissera MD, Souza CF, Parmeggiani BS, Santos RCV, Leipnitz G, Moreira KLS, et al. Streptococcus agalactiae impairs cerebral bioenergetics in experimentally infected silver catfish. Micro Pathog. 2017;111:28–32. https://doi.org/10.1016/j.micpath.2017.08.013

    Article  CAS  Google Scholar 

  54. Zurlo G, Piquereau J, Moulin M, Pires Da Silva J, Gressette M, Ranchoux B, et al. Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation: role in pulmonary arterial hypertension. J Hypertens. 2018;36:1164–77. https://doi.org/10.1097/HJH.0000000000001676

    Article  CAS  PubMed  Google Scholar 

  55. Furian M, Latshang TD, Aeschbacher SS, Ulrich S, Sooronbaev T, Mirrakhimov EM, et al. Cerebral oxygenation in highlanders with and without high-altitude pulmonary hypertension. Exp Physiol. 2015;100:905–14. https://doi.org/10.1113/EP085200

    Article  CAS  PubMed  Google Scholar 

  56. Bei Y, Chen T, Banciu DD, Cretoiu D, Xiao J. Circulating exosomes in cardiovascular diseases. 2017;998:255–69.

  57. Dianat M, Radan M, Mard SA, Sohrabi F, Saryazdi SSN. Contribution of reactive oxygen species via the OXR1 signaling pathway in the pathogenesis of monocrotaline-induced pulmonary arterial hypertension: the protective role of Crocin. Life Sci. 2020:117848. https://doi.org/10.1016/j.lfs.2020.117848

  58. Türck P, Fraga S, Salvador I, Campos-Carraro C, Lacerda D, Bahr A, et al. Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutrition. 2020;70:110579 https://doi.org/10.1016/j.nut.2019.110579

    Article  CAS  PubMed  Google Scholar 

  59. Henning RJ. Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 2020. https://doi.org/10.1007/s12265-020-10040-5.

  60. Bost F, Kaminski L. The metabolic modulator PGC-1α in cancer. Am J Cancer Res. 2019;9:198–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Enache I, Charles AL, Bouitbir J, Favret F, Zoll J, Metzger D, et al. Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem. 2013;373:161–70. https://doi.org/10.1007/s11010-012-1485-6

    Article  CAS  PubMed  Google Scholar 

  62. Vázquez-Garza E, Bernal-Ramírez J, Jerjes-Sánchez C, Lozano O, Acuña-Morín E, Vanoye-Tamez M, et al. Resveratrol prevents right ventricle remodeling and dysfunction in monocrotaline-induced pulmonary arterial hypertension with a limited improvement in the lung vasculature. Oxid Med Cell Longev. 2020;2020:13 https://doi.org/10.1155/2020/1841527

    Article  CAS  Google Scholar 

  63. Khalyfa A, Castro-Grattoni AL, Gozal D. Cardiovascular morbidities of obstructive sleep apnea and the role of circulating extracellular vesicles. Ther Adv Respir Dis. 2019;13. https://doi.org/10.1177/1753466619895229

  64. Zhang J, Cui X, Guo J, Cao C, Zhang Z, Wang B, et al. Small but significant: Insights and new perspectives of exosomes in cardiovascular disease. J Cell Mol Med. 2020;jcmm.15492. https://doi.org/10.1111/jcmm.15492

  65. Guo D, Xu Y, Ding J, Dong J, Jia N, Li Y, et al. Roles and clinical applications of exosomes in cardiovascular disease. Biomed Res Int. 2020;2020. https://doi.org/10.1155/2020/5424281

  66. Scrimgeour LA, Potz BA, Aboul Gheit A, Shi G, Stanley M, Zhang Z, et al. Extracellular vesicles promote arteriogenesis in chronically ischemic myocardium in the setting of metabolic syndrome. J Am Heart Assoc. 2019;8. https://doi.org/10.1161/JAHA.119.012617

  67. Plotnikov EY, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Zorov SD, et al. Intercellular signalling cross-talk: to kill, to heal and to rejuvenate. Hear Lung Circ. 2017;26:648–59.

    Article  Google Scholar 

  68. Li J, Li Y, Atakan MM, Kuang J, Hu Y, Bishop DJ, et al. The molecular adaptive responses of skeletal muscle to high-intensity exercise/training and hypoxia. Antioxidants. 2020;9:1–21.

    Article  Google Scholar 

  69. Dabral S, Muecke C, Valasarajan C, Schmoranzer M, Wietelmann A, Semenza GL, et al. A RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-10044-z

  70. Ryan JJ, Archer SL. Emerging concepts in the molecular basis of pulmonary arterial hypertension. Part I: Metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation. 2015;131:1691–702. https://doi.org/10.1161/CIRCULATIONAHA.114.006979

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu W, Zhang Y, Lu L, Wang L, Chen M, Hu T. Expression and correlation of hypoxia-inducible factor-1α (HIF-1α) with pulmonary artery remodeling and right ventricular hypertrophy in experimental pulmonary embolism. Med Sci Monit. 2017;23:2083–8. https://doi.org/10.12659/MSM.900354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu J, Wang W, Wang L, Qi XM, Sha YH, Yang T. 3-Bromopyruvate alleviates the development of monocrotaline-induced rat pulmonary arterial hypertension by decreasing aerobic glycolysis, inducing apoptosis, and suppressing inflammation. Chin Med J (Engl). 2020;133:49–60. https://doi.org/10.1097/CM9.0000000000000577

    Article  Google Scholar 

  73. Liu P, Gu Y, Luo J, Ye P, Zheng Y, Yu W, et al. Inhibition of Src activation reverses pulmonary vascular remodeling in experimental pulmonary arterial hypertension via Akt/mTOR/HIF-1<alpha> signaling pathway. Exp Cell Res. 2019;380:36–46. https://doi.org/10.1016/j.yexcr.2019.02.022

    Article  CAS  PubMed  Google Scholar 

  74. Veith C, Schermuly RT, Brandes RP, Weissmann N. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension. J Physiol. 2016;594:1167–77.

    Article  CAS  Google Scholar 

  75. Gajecki D, Gawrys J, Szahidewicz-Krupska E, Doroszko A. Novel molecular mechanisms of pulmonary hypertension: a search for biomarkers and novel drug targets—from bench to bed site. Oxid Med Cell Longev. 2020;2020. https://doi.org/10.1155/2020/7265487

  76. Vetrovoy O, Sarieva K, Lomert E, Nimiritsky P, Eschenko N, Galkina O, et al. Pharmacological HIF1 inhibition eliminates downregulation of the pentose phosphate pathway and prevents neuronal apoptosis in rat hippocampus caused by severe hypoxia. J Mol Neurosci. 2020;70:635–46. https://doi.org/10.1007/s12031-019-01469-8

    Article  CAS  PubMed  Google Scholar 

  77. Zhao L, Luo H, Li X, Li T, He J, Qi Q, et al. Exosomes derived from human pulmonary artery endothelial cells shift the balance between proliferation and apoptosis of smooth muscle cells. Cardiol. 2017;137:43–53. https://doi.org/10.1159/000453544

    Article  CAS  Google Scholar 

  78. Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. Microrna and ros crosstalk in cardiac and pulmonary diseases. Int J Mol Sci. 2020;21:1–34. https://doi.org/10.3390/ijms21124370

    Article  CAS  Google Scholar 

  79. Liu WG, Han LL, Xiang R. Protection of miR-19b in hypoxia/reoxygenation-induced injury by targeting PTEN. J Cell Physiol. 2019;234:16226–37. https://doi.org/10.1002/jcp.28286

    Article  CAS  Google Scholar 

  80. Wu DM, Wen X, Wang YJ, Han XR, Wang S, Shen M, et al. Effect of microRNA-186 on oxidative stress injury of neuron by targeting interleukin 2 through the janus kinase-signal transducer and activator of transcription pathway in a rat model of Alzheimer’s disease. J Cell Physiol. 2018;233:9488–502. https://doi.org/10.1002/jcp.26843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We thank Tânia Regina Fernandes Piedras for all technical assistance during the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane Belló-Klein.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corssac, G.B., Bonetto, J.P., Campos-Carraro, C. et al. Pulmonary arterial hypertension induces the release of circulating extracellular vesicles with oxidative content and alters redox and mitochondrial homeostasis in the brains of rats. Hypertens Res 44, 918–931 (2021). https://doi.org/10.1038/s41440-021-00660-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00660-y

Keywords

This article is cited by

Search

Quick links