Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell seeding accelerates the vascularization of tissue engineering constructs in hypertensive mice

Abstract

Rapid blood vessel ingrowth into transplanted constructs represents the key requirement for successful tissue engineering. Seeding three-dimensional scaffolds with suitable cells is an approved technique for this challenge. Since a plethora of patients suffer from widespread diseases that limit the capacity of neoangiogenesis (e.g., hypertension), we investigated the incorporation of cell-seeded poly-L-lactide-co-glycolide scaffolds in hypertensive (BPH/2J, group A) and nonhypertensive (BPN/3J, group B) mice. Collagen-coated scaffolds (A1 and B1) were additionally seeded with osteoblast-like (A2 and B2) and mesenchymal stem cells (A3 and B3). After implantation into dorsal skinfold chambers, inflammation and newly formed microvessels were measured using repetitive intravital fluorescence microscopy for 2 weeks. Apart from a weak inflammatory response in all groups, significantly increased microvascular densities were found in cell-seeded scaffolds (day 14, A2: 192 ± 12 cm/cm2, A3: 194 ± 10 cm/cm2, B2: 249 ± 19 cm/cm2, B3: 264 ± 17 cm/cm2) when compared with controls (A1: 129 ± 10 cm/cm2, B1: 185 ± 8 cm/cm2). In this context, hypertensive mice showed reduced neoangiogenesis in comparison with nonhypertensive animals. Therefore, seeding approved scaffolds with organ-specific or pluripotent cells is a very promising technique for tissue engineering in hypertensive organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frerich B, Lindemann N, Kurtz-Hoffmann J, Oertel K. In vitro model of a vascular stroma for the engineering of vascularized tissues. Int J Clin Oral Maxillofac Surg. 2001;30:414–20.

    CAS  Google Scholar 

  2. Kampmann A, Lindhorst D, Schumann P, Zimmerer R, Kokemuller H, Rucker M, et al. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvasc Res. 2013;90:71–79.

    CAS  PubMed  Google Scholar 

  3. Lindhorst D, Tavassol F, von See C, Schumann P, Laschke MW, Harder Y, et al. Effects of VEGF loading on scaffold-confined vascularization. J Biomed Mater Res A. 2010;95:783–92.

    PubMed  Google Scholar 

  4. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19:1029–34.

    CAS  PubMed  Google Scholar 

  5. Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, et al. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices. 2004;6:269–78.

    CAS  PubMed  Google Scholar 

  6. Rubenstein D, Han D, Goldgraben S, El-Gendi H, Gouma PI, Frame MD. Bioassay chamber for angiogenesis with perfused explanted arteries and electrospun scaffolding. Microcirculation. 2007;14:723–37.

    CAS  PubMed  Google Scholar 

  7. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang Y. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 2005;11:302–9.

    CAS  PubMed  Google Scholar 

  8. Levenberg S, Langer R. Advances in tissue engineering. Curr Top Dev Biol. 2004;61:113–34.

    CAS  PubMed  Google Scholar 

  9. Gerecht-Nir S, Ziskind A, Cohen S, Itskovitz-Eldor J. Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Invest. 2003;83:1811–20.

    PubMed  Google Scholar 

  10. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10:7–19.

    CAS  PubMed  Google Scholar 

  11. Schiekofer S, Galasso G, Sato K, Kraus BJ, Walsh K. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vasc Biol. 2005;25:1603–9.

    CAS  PubMed  Google Scholar 

  12. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    PubMed  PubMed Central  Google Scholar 

  13. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.

    PubMed  Google Scholar 

  14. Neuhauser H, Thamm M, Ellert U. Blutdruck in Deutschland 2008–11. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013;56:795–801.

    CAS  PubMed  Google Scholar 

  15. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  16. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544.

    Google Scholar 

  17. Levy BI, Schiffrin EL, Mourad J-J, Agostini D, Vicaut E, Safar ME, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118:968–76.

    PubMed  Google Scholar 

  18. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? Hypertension. 2006;48:1012–7.

    CAS  PubMed  Google Scholar 

  19. Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI, Tibiriçà E. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens. 2006;19:477–83.

    PubMed  Google Scholar 

  20. Kubis N, Richer C, Domergue V, Giudicelli J-F, Lévy BI. Role of microvascular rarefaction in the increased arterial pressure in mice lacking for the endothelial nitric oxide synthase gene (eNOS3pt−/−). J Hypertens. 2002;20:1581–7.

    CAS  PubMed  Google Scholar 

  21. de Jongh RT, Serné EH, IJzerman RG, de Vries G, Stehouwer CD. Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation. 2004;109:2529–35.

    PubMed  Google Scholar 

  22. Fukuda S, Yasu T, Kobayashi N, Ikeda N, Schmid-Schönbein GW. Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat. Circ Res. 2004;95:100–8.

    CAS  PubMed  Google Scholar 

  23. Schumann P, Tavassol F, Lindhorst D, Stuehmer C, Bormann KH, Kampmann A, et al. Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo. Microvasc Res. 2009;78:180–90.

    PubMed  Google Scholar 

  24. Schumann P, von See C, Kampmann A, Lindhorst D, Tavassol F, Kokemuller H, et al. Comparably accelerated vascularization by preincorporation of aortic fragments and mesenchymal stem cells in implanted tissue engineering constructs. J Biomed Mater Res A. 2011;97:383–94.

    PubMed  Google Scholar 

  25. Schumann P, Lindhorst D, von See C, Menzel N, Kampmann A, Tavassol F, et al. Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in matrigel. J Biomed Mater Res A. 2014;102:1652–62.

    PubMed  Google Scholar 

  26. Tavassol F, Kampmann A, Lindhorst D, Schumann P, Kokemuller H, Bormann KH, et al. Prolongated survival of osteoblast-like cells on biodegradable scaffolds by heat shock preconditioning. Tissue Eng Part A. 2011;17:1935–43.

    CAS  PubMed  Google Scholar 

  27. Tavassol F, Schumann P, Lindhorst D, Sinikovic B, Voss A, von See C, et al. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells. Tissue Eng Part A. 2010;16:2265–79.

    CAS  PubMed  Google Scholar 

  28. Schumann P, Kampmann A, Sauer G, Lindhorst D, von See C, Stoetzer M, et al. Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts. Biochem Eng J. 2016;105:230–41.

    CAS  Google Scholar 

  29. Schumann P, Lindhorst D, Kampmann A, Gellrich NC, Krone-Wolf S, Meyer-Lindenberg A, et al. Decelerated vascularization in tissue-engineered constructs in association with diabetes mellitus in vivo. J Diabetes Complicat. 2015;29:855–64.

    Google Scholar 

  30. Schlager G, Sides J. Characterization of hypertensive and hypotensive inbred strains of mice. Lab Anim Sci. 1997;47:288–92.

    CAS  PubMed  Google Scholar 

  31. Uddin M, Yang H, Shi M, Polley-Mandal M, Guo Z. Elevation of oxidative stress in the aorta of genetically hypertensive mice. Mech Ageing Dev. 2003;124:811–7.

    CAS  PubMed  Google Scholar 

  32. Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K. Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol. 1993;143:1055–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Carvalho C, Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Fabrication of soft and hard biocompatible scaffolds using 3D-BioplottingTM. Virtual modeling and rapid manufacturing-advanced research in virtual and rapid prototyping. London: Taylor & Francis Group; 2005, pp 97–102.

  34. Choi JY, Lee BH, Song KB, Park RW, Kim IS, Sohn KY, et al. Expression patterns of bone‐related proteins during osteoblastic differentiation in MC3T3‐E1 cells. J Cell Biochem. 1996;61:609–18.

    CAS  PubMed  Google Scholar 

  35. Park B-W, Hah Y-S, Choi M-J, Ryu Y-M, Lee S-G, Kim DR, et al. In vitro osteogenic differentiation of cultured human dental papilla-derived cells. J Oral Maxillofac Surg. 2009;67:507–14.

    PubMed  Google Scholar 

  36. Lennon DP, Caplan AI. Isolation of rat marrow-derived mesenchymal stem cells. Exp Hematol. 2006;34:1606–7.

    CAS  PubMed  Google Scholar 

  37. Meirelles LdS, Nardi NB. Murine marrow‐derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol. 2003;123:702–11.

    Google Scholar 

  38. Rucker M, Schafer T, Roesken F, Spitzer WJ, Bauer M, Menger MD. Reduction of inflammatory response in composite flap transfer by local stress conditioning-induced heat-shock protein 32. Surgery. 2001;129:292–301.

    CAS  PubMed  Google Scholar 

  39. Laschke MW, Witt K, Pohlemann T, Menger MD. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J Biomed Mater Res B Appl Biomater. 2007;82:494–505.

    PubMed  Google Scholar 

  40. Baker M, Wayland H. On-line volume flow rate and velocity profile measurement for blood in microvessels. Microvasc Res. 1974;7:131–43.

    CAS  PubMed  Google Scholar 

  41. Menger MD, Steiner D, Messmer K. Microvascular ischemia-reperfusion injury in striated muscle: significance of “no reflow”. Am J Physiol. 1992;263:H1892–900.

    CAS  PubMed  Google Scholar 

  42. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Selkurt EE, Abel FL, Edwards JL, Yum M. Renal function in dogs with hypertension induced by immunologic nephritis. Proc Soc Exp Biol Med. 1973;144:295–303.

    CAS  PubMed  Google Scholar 

  44. Spitznagel JK, Schroeder HA. Experimental pyelonephritis and hypertension in rats. Proc Soc Exp Biol Med. 1951;77:762–4.

    CAS  PubMed  Google Scholar 

  45. Ye S, Zhong H, Duong VN, Campese VM. Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertension. 2002;39:1101–6.

    CAS  PubMed  Google Scholar 

  46. Lerman LO, Chade AR, Sica V, Napoli C. Animal models of hypertension: an overview. J Lab Clin Med. 2005;146:160–73.

    CAS  PubMed  Google Scholar 

  47. Marques FZ, Campain AE, Davern PJ, Yang YHJ, Head GA, Morris BJ. Global identification of the genes and pathways differentially expressed in hypothalamus in early and established neurogenic hypertension. Physiol Genomics. 2011;43:766–71.

    CAS  PubMed  Google Scholar 

  48. Jackson KL, Marques FZ, Watson AM, Palma-Rigo K, Nguyen-Huu T-P, Morris BJ, et al. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension. 2013;62:775–81.

    CAS  PubMed  Google Scholar 

  49. Sugiyama F, Yagami K, Paigen B. Mouse models of blood pressure regulation and hypertension. Curr Hypertens Rep. 2001;3:41–8.

    CAS  PubMed  Google Scholar 

  50. Chiu CL, Jackson KL, Hearn NL, Steiner N, Head GA, Lind JM. Identification of genes with altered expression in male and female Schlager hypertensive mice. BMC Med Genet. 2014;15:101.

    PubMed  PubMed Central  Google Scholar 

  51. Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006;12:2093–104.

    CAS  PubMed  Google Scholar 

  52. Rücker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mülhaupt R, et al. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials. 2006;27:5027–38.

    PubMed  Google Scholar 

  53. Phelps EA, Garcia AJ. Update on therapeutic vascularization strategies. Regen Med. 2009;4:65–80.

    PubMed  Google Scholar 

  54. Au P, Tam J, Duda DG, Lin P-C, Munn LL, Fukumura D, et al. Paradoxical effects of PDGF-BB overexpression in endothelial cells on engineered blood vessels in vivo. Am J Pathol. 2009;175:294–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Erman H, Gelisgen R, Cengiz M, Tabak O, Erdenen F, Uzun H. The association of vascular endothelial growth factor, metalloproteinases and their tissue inhibitors with cardiovascular risk factors in the metabolic syndrome. Eur Rev Med Pharm Sci. 2016;20:1015–22.

    CAS  Google Scholar 

  56. Ferroni P, Della-Morte D, Palmirotta R, Rundek T, Guadagni F, Roselli M. Angiogenesis and hypertension: the dual role of anti-hypertensive and anti-angiogenic therapies. Curr Vasc Pharm. 2012;10:479–93.

    CAS  Google Scholar 

  57. Kaess BM, Preis SR, Beiser A, Sawyer DB, Chen TC, Seshadri S, et al. Circulating vascular endothelial growth factor and the risk of cardiovascular events. Heart. 2016;102:1898–901.

    PubMed  Google Scholar 

  58. Rüger BM, Breuss J, Hollemann D, Yanagida G, Fischer MB, Mosberger I, et al. Vascular morphogenesis by adult bone marrow progenitor cells in three‐dimensional fibrin matrices. Differentiation. 2008;76:772–83.

    PubMed  Google Scholar 

  59. Deckers MM, Van Bezooijen RL, Van Der Horst G, Hoogendam J, van der Bent C, Papapoulos SE, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002;143:1545–53.

    CAS  PubMed  Google Scholar 

  60. Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, et al. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials. 2008;29:4217–26.

    CAS  PubMed  Google Scholar 

  61. Schlager GJG. Selection for blood pressure levels in mice. Genetics. 1974;76:537–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang B, Xie Q-Y, Quan Y, Pan X-M, Liam D-F. Reactive oxygen species induce cell death via Akt signaling in rat osteoblast-like cell line ROS 17/2.8. Toxicol Ind Health. 2015;31:1236–42.

    CAS  PubMed  Google Scholar 

  63. Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells. 2002;20:205–14.

    CAS  PubMed  Google Scholar 

  64. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226:507–20.

    CAS  Google Scholar 

  65. Chopinaud M, Labbé D, Creveuil C, Marc M, Bénateau H, Mourgeon B, et al. Autologous adipose tissue graft to treat hypertensive leg ulcer: a pilot study. Dermatology. 2017;233:234–41.

    CAS  PubMed  Google Scholar 

  66. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014;2014:406960.

    PubMed  PubMed Central  Google Scholar 

  67. Laschke M, Häufel J, Thorlacius H, Menger M. New experimental approach to study host tissue response to surgical mesh materials in vivo. J Biomed Mater Res A. 2005;74:696–704.

    CAS  PubMed  Google Scholar 

  68. Paton JF, Waki H. Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev. 2009;33:89–94.

    CAS  PubMed  Google Scholar 

  69. Peterson JR, Sharma RV, Davisson RL. Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep. 2006;8:232–41.

    CAS  PubMed  Google Scholar 

  70. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost. 2003;29:435–50.

    CAS  PubMed  Google Scholar 

  71. Bonnin P, Vilar J, Levy BI. Effect of normovolemic hematocrit changes on blood pressure and flow. Life Sci. 2016;157:62–66.

    CAS  PubMed  Google Scholar 

  72. Jackson KL, Head GA, Gueguen C, Stevenson ER, Lim JK, Marques FJFip. Mechanisms responsible for genetic hypertension in Schlager BPH/2 mice. Front Physiol. 2019;10:1311.

    PubMed  PubMed Central  Google Scholar 

  73. Baumbach GL, Sigmund CD, Faraci FMJH. Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension. 2003;41:50–55.

    CAS  PubMed  Google Scholar 

  74. McGuire JJ, Van Vliet BN, Giménez J, King JC, Halfyard SJ. Persistence of PAR-2 vasodilation despite endothelial dysfunction in BPH/2 hypertensive mice. Pflug Arch. 2007;454:535–43.

    CAS  Google Scholar 

  75. Nelson JW, Ferdaus MZ, McCormick JA, Minnier J, Kaul S, Ellison DH, et al. Endothelial transcriptomics reveals activation of fibrosis-related pathways in hypertension. Physiol Genomics. 2018;50:104–16.

    CAS  PubMed  Google Scholar 

  76. Tajada S, Cidad P, Moreno‐Domínguez A, Pérez‐García MT, López‐López JR. High blood pressure associates with the remodelling of inward rectifier K+ channels in mice mesenteric vascular smooth muscle cells. J Physiol. 2012;590:6075–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jaffrey SR, Snyder SH. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996;274:774–7.

    CAS  PubMed  Google Scholar 

  78. Fan J-S, Zhang Q, Li M, Tochio H, Yamazaki T, Shimizu M, et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem. 1998;273:33472–81.

    CAS  PubMed  Google Scholar 

  79. Antonios T, Rattray F, Singer D, Markandu N, Mortimer P, MacGregor G. Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension. Heart. 2003;89:175–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pries AR, Secomb TW, Gaehtgens P. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension. Hypertension. 1999;33:153–61.

    CAS  PubMed  Google Scholar 

  81. Levy B, Ambrosio G, Pries A, Struijker-Boudier H. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735–40.

    CAS  PubMed  Google Scholar 

  82. Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV, et al. Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology. 2006;147:3510–8.

    CAS  PubMed  Google Scholar 

  83. Houben A, Canoy M, Paling HA, Derhaag PJ, de Leeuw PW. Quantitative analysis of retinal vascular changes in essential and renovascular hypertension. J Hypertens. 1995;13:1729–33.

    CAS  PubMed  Google Scholar 

  84. Sala A, Hänseler P, Ranga A, Lutolf MP, Vörös J, Ehrbar M, et al. Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Integr Biol. 2011;3:1102–11.

    Google Scholar 

  85. Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, et al. Endothelialized networks with a vascular geometry in microfabricated poly (dimethyl siloxane). Biomed Microdevices. 2004;6:269–78.

    CAS  PubMed  Google Scholar 

  86. Battegay EJ, de Miguel LS, Petrimpol M, Humar R. Effects of anti-hypertensive drugs on vessel rarefaction. Curr Opin Pharm. 2007;7:151–7.

    CAS  Google Scholar 

  87. Kobayashi N, DeLano FA, Schmid-Schönbein GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2005;25:2114–21.

    CAS  PubMed  Google Scholar 

  88. Saheera S, Nair RR. Accelerated decline in cardiac stem cell efficiency in Spontaneously hypertensive rat compared to normotensive Wistar rat. PLoS ONE. 2017;12:e0189129

    PubMed  PubMed Central  Google Scholar 

  89. Saheera S, Potnuri AG, Nair RR. Modulation of cardiac stem cell characteristics by metoprolol in hypertensive heart disease. Hypertens Res. 2018;41:253–62.

    CAS  PubMed  Google Scholar 

  90. Saheera S, Potnuri AG, Nair RR. Protective effect of antioxidant Tempol on cardiac stem cells in chronic pressure overload hypertrophy. Life Sci. 2019;222:88–93.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the excellent technical assistance of Marie Luise Jenzer and Stefanie Rausch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schumann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, M.E.H., Kampmann, A., Schumann-Moor, K. et al. Cell seeding accelerates the vascularization of tissue engineering constructs in hypertensive mice. Hypertens Res 44, 23–35 (2021). https://doi.org/10.1038/s41440-020-0524-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0524-z

Search

Quick links