Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Review Series - Digital Hypertension
  • Published:

The dawning of the digital era in the management of hypertension

Abstract

Awareness, treatment, and control of hypertension are of the utmost importance in conquering stroke and cardiovascular disease. To reduce the global burden of hypertension, the Japanese Society of Hypertension (JSH) established the “JSH Future Plan” based on an increasing need to transform the strategy for combating hypertension. In addition to energizing conventional approaches in basic, translational, and clinical research, the application of rapidly evolving digital health technologies and artificial intelligence to hypertension healthcare and research (digital hypertension) holds promise for providing further insights into the pathophysiology and therapeutic targets and implementing predictive, personalized, and preemptive approaches in clinical practice. With great potential to revolutionize the landscape of hypertension, digital hypertension has some technical, legal, ethical, social, and financial issues to overcome. Given the multidisciplinary framework, digital hypertension requires comprehensive and strategic collaboration among industry, academia, and government to move forward toward the goal of “Future Medicine”.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. A global brief on hypertension. WHO Press; Geneva, Switzerland 2013.

  2. Ikeda N, Saito E, Kondo N, Inoue M, Ikeda S, Satoh T, et al. What has made the population of Japan healthy? Lancet. 2011;378:1094–105.

    PubMed  Google Scholar 

  3. Ikeda N, Inoue M, Iso H, Ikeda S, Satoh T, Noda M, et al. Adult mortality attributable to preventable risk factors for non-communicable diseases and injuries in Japan: a comparative risk assessment. PLoS Med. 2012;9:e1001160.

    PubMed  PubMed Central  Google Scholar 

  4. Satoh A, Arima H, Ohkubo T, Nishi N, Okuda N, Ae R, et al. Associations of socioeconomic status with prevalence, awareness, treatment, and control of hypertension in a general Japanese population: NIPPON DATA2010. J Hypertens. 2017;35:401–8.

    CAS  PubMed  Google Scholar 

  5. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Google Scholar 

  6. Yasuda S, Miyamoto Y, Ogawa H. Current status of cardiovascular medicine in the Aging Society of Japan. Circulation. 2018;138:965–7.

    PubMed  Google Scholar 

  7. Komuro I, Kaneko H, Morita H, Isobe M, Nakayama H, Minematsu K, et al. Nationwide actions against heart failure pandemic in Japan—what should we do from academia? Circ J. 2019;83:1819–21.

    PubMed  Google Scholar 

  8. Toyoda K, Inoue M, Koga M. Small but steady steps in stroke medicine in Japan. J Am Heart Assoc. 2019;8:e013306.

    PubMed  PubMed Central  Google Scholar 

  9. Nakayama H, Minematsu K, Yamaguchi T, Miyamoto S, Isobe M, Komuro I, et al. Approval of Stroke and Cardiovascular Disease Control Act in Japan: comprehensive nationwide approach for prevention, treatment, and patients’ support. Int J Stroke. 2020;15:7–8.

    PubMed  Google Scholar 

  10. Node K, Kishi T, Tanaka A, Itoh H, Rakugi H, Ohya Y, et al. The Japanese Society of Hypertension—digest of plan for the future. Hypertens Res. 2018;41:989–90.

    PubMed  Google Scholar 

  11. Dzau VJ, Balatbat CA. Future of hypertension. Hypertension. 2019;74:450–7.

    CAS  PubMed  Google Scholar 

  12. Suchard MA, Schuemie MJ, Krumholz HM, You SC, Chen R, Pratt N, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet. 2019;394:1816–26.

    PubMed  Google Scholar 

  13. Rudrapatna VA, Butte AJ. Opportunities and challenges in using real-world data for health care. J Clin Invest. 2020;130:565–74.

    PubMed  Google Scholar 

  14. Kawaguchi H, Koike S, Ohe K. Facility and regional factors associated with the new adoption of electronic medical records in Japan: nationwide longitudinal observational study. JMIR Med Inf. 2019;7:e14026.

    Google Scholar 

  15. Ministry of Health, Labour and Welfare, Japan. Facilitation in informatization in healthcare field. Ministry of Health, Labour and Welfare, Japan; Tokyo, Japan 2018. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/iryou/johoka/.

  16. Kawaguchi H, Koike S, Ohe K. Regional differences in electronic medical record adoption in Japan: a nationwide longitudinal ecological study. Int J Med Inf. 2018;115:114–9.

    Google Scholar 

  17. Yasunaga H, Imamura T, Yamaki S, Endo H. Computerizing medical records in Japan. Int J Med Inf. 2008;77:708–13.

    Google Scholar 

  18. Kanakubo T, Kharrazi H. Comparing the trends of electronic health record adoption among hospitals of the United States and Japan. J Med Syst. 2019;43:224.

    PubMed  Google Scholar 

  19. Blumenthal D. Stimulating the adoption of health information technology. N Engl J Med. 2009;360:1477–9.

    CAS  PubMed  Google Scholar 

  20. Adler-Milstein J, Jha AK. HITECH act drove large gains in hospital electronic health record adoption. Health Aff. 2017;36:1416–22.

    Google Scholar 

  21. Kimura M, Nakayasu K, Ohshima Y, Fujita N, Nakashima N, Jozaki H, et al. SS-MIX: a ministry project to promote standardized healthcare information exchange. Methods Inf Med. 2011;50:131–9.

    CAS  PubMed  Google Scholar 

  22. Tanaka K, Yamamoto R, Nakasho K, Miyaji A. Development of a secure cross-institutional data collection system based on distributed standardized EMR storage. Stud Health Technol Inf. 2018;255:35–9.

    Google Scholar 

  23. Tanaka K, Yamamoto R. Assessment of traceability implementation of a cross-institutional secure data collection system based on distributed standardized EMR storage. Stud Health Technol Inf. 2019;264:1373–7.

    Google Scholar 

  24. Yamada K, Itoh M, Fujimura Y, Kimura M, Murata K, Nakashima N, et al. The utilization and challenges of Japan’s MID-NET® medical information database network in postmarketing drug safety assessments: a summary of pilot pharmacoepidemiological studies. Pharmacoepidemiol Drug Saf. 2019;28:601–8.

    PubMed  Google Scholar 

  25. Sugiyama T, Miyo K, Tsujimoto T, Kominami R, Ohtsu H, Ohsugi M, et al. Design of and rationale for the Japan Diabetes compREhensive database project based on an Advanced electronic Medical record System (J-DREAMS). Diabetol Int. 2017;8:375–82.

    PubMed  PubMed Central  Google Scholar 

  26. Nakagawa N, Sofue T, Kanda E, Nagasu H, Matsushita K, Nangaku M, et al. J-CKD-DB: a nationwide multicentre electronic health record-based chronic kidney disease database in Japan. Sci Rep. 2020;10:7351.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Virnig BA, McBean M. Administrative data for public health surveillance and planning. Annu Rev Public Health. 2001;22:213–30.

    CAS  PubMed  Google Scholar 

  28. Matsuda S, Fujimori K, Kuwabara K, Ishikawa KB, Fushimi K. Diagnosis procedure combination as an infrastructure for the clinical study. Asian Pac J Dis Manag. 2011;5:81–87.

    Google Scholar 

  29. Ishikawa KB. Medical big data for research use: current status and related issues. Jpn Med Assoc J. 2016;59:110–24.

    Google Scholar 

  30. Yamana H, Moriwaki M, Horiguchi H, Kodan M, Fushimi K, Yasunaga H. Validity of diagnoses, procedures, and laboratory data in Japanese administrative data. J Epidemiol. 2017;27:476–82.

    PubMed  PubMed Central  Google Scholar 

  31. Matsuda K. Hospitals and big data: use of case mix and e-claim data in Japan. Jpn Hosp. 2016:45–52. https://pubmed.ncbi.nlm.nih.gov/30226961/.

  32. Riva-Rocci S, Zanchetti A, Mancia G. A new sphygmomanometer. Sphygmomanometric technique. J Hypertens. 1996;14:1–12.

    CAS  PubMed  Google Scholar 

  33. Mancia G, Zanchetti A. One hundred years of auscultatory blood pressure: commemorating N. S. Korotkoff. J Hypertens. 2005;23:1–2.

    CAS  PubMed  Google Scholar 

  34. Kain HK, Hinman AT, Sokolow M. Arterial blood pressure measurements with a portable recorder in hypertensive patients. I. Variability and correlation with “casual” pressures. Circulation. 1964;30:882–92.

    CAS  PubMed  Google Scholar 

  35. Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med. 2006;354:2368–74.

    CAS  PubMed  Google Scholar 

  36. Mancia G, Verdecchia P. Clinical value of ambulatory blood pressure: evidence and limits. Circ Res. 2015;116:1034–45.

    CAS  PubMed  Google Scholar 

  37. Gorostidi M, Vinyoles E, Banegas JR, de la Sierra A. Prevalence of white-coat and masked hypertension in national and international registries. Hypertens Res. 2015;38:1–7.

    PubMed  Google Scholar 

  38. Asayama K, Satoh M, Kikuya M. Diurnal blood pressure changes. Hypertens Res. 2018;41:669–78.

    CAS  PubMed  Google Scholar 

  39. Asayama K, Wei FF, Liu YP, Hara A, Gu YM, Schutte R, et al. Does blood pressure variability contribute to risk stratification? Methodological issues and a review of outcome studies based on home blood pressure. Hypertens Res. 2015;38:97–101.

    PubMed  Google Scholar 

  40. We Are Social Inc. Digital in 2020. We Are Social Inc; New York, USA 2020. https://wearesocial.com/digital-2020.

  41. Burke LE, Ma J, Azar KM, Bennett GG, Peterson ED, Zheng Y, et al. Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2015;132:1157–213.

    PubMed  PubMed Central  Google Scholar 

  42. Margolis KL, Asche SE, Bergdall AR, Dehmer SP, Groen SE, Kadrmas HM, et al. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial. JAMA. 2013;310:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Omboni S, Gazzola T, Carabelli G, Parati G. Clinical usefulness and cost effectiveness of home blood pressure telemonitoring: meta-analysis of randomized controlled studies. J Hypertens. 2013;31:455–67.

    CAS  PubMed  Google Scholar 

  44. Duan Y, Xie Z, Dong F, Wu Z, Lin Z, Sun N, et al. Effectiveness of home blood pressure telemonitoring: a systematic review and meta-analysis of randomised controlled studies. J Hum Hypertens. 2017;31:427–37.

    CAS  PubMed  Google Scholar 

  45. Ministry of Internal Affairs and Communications, Japan. 2019 White Paper on Information and Communications in Japan. inistry of Internal Affairs and Communications, Japan; Tokyo, Japan 2019. https://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2019/2019-index.html.

  46. Milani RV, Lavie CJ, Bober RM, Milani AR, Ventura HO. Improving hypertension control and patient engagement using digital tools. Am J Med. 2017;130:14–20.

    PubMed  Google Scholar 

  47. Shan R, Ding J, Plante TB, Martin SS. Mobile health access and use among individuals with or at risk for cardiovascular disease: 2018 Health Information National Trends Survey (HINTS). J Am Heart Assoc. 2019;8:e014390.

    PubMed  PubMed Central  Google Scholar 

  48. Lu X, Yang H, Xia X, Lu X, Lin J, Liu F, et al. Interactive mobile health intervention and blood pressure management in adults. Hypertension. 2019;74:697–704.

    CAS  PubMed  Google Scholar 

  49. Kuwabara M, Harada K, Hishiki Y, Kario K. Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL. J Clin Hypertens. 2019;21:853–8.

    Google Scholar 

  50. Weenk M, van Goor H, van Acht M, Engelen LJ, van de Belt TH, Bredie SJH. A smart all-in-one device to measure vital signs in admitted patients. PLoS ONE. 2018;13:e0190138.

    PubMed  PubMed Central  Google Scholar 

  51. Matwyshyn AM. The Internet of Bodies. Wm. & Mary L. Rev. 2019;61:77–167.

    Google Scholar 

  52. Roehrs A, da Costa CA, Righi RD, de Oliveira KS. Personal health records: a systematic literature review. J Med Internet Res. 2017;19:e13.

    PubMed  PubMed Central  Google Scholar 

  53. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    CAS  PubMed  Google Scholar 

  54. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9.

    CAS  PubMed  Google Scholar 

  55. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.

    CAS  PubMed  Google Scholar 

  56. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–9.

    CAS  PubMed  Google Scholar 

  57. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.

    CAS  PubMed  Google Scholar 

  58. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–58.

    PubMed  Google Scholar 

  59. Makino M, Yoshimoto R, Ono M, Itoko T, Katsuki T, Koseki A, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019;9:11862.

    PubMed  PubMed Central  Google Scholar 

  60. Christiansen EM, Yang SJ, Ando DM, Javaherian A, Skibinski G, Lipnick S, et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell. 2018;173:792–803.e719.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ota S, Horisaki R, Kawamura Y, Ugawa M, Sato I, Hashimoto K, et al. Ghost cytometry. Science. 2018;360:1246–51.

    CAS  PubMed  Google Scholar 

  62. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25:30–6.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Akazawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuoka, R., Akazawa, H., Kodera, S. et al. The dawning of the digital era in the management of hypertension. Hypertens Res 43, 1135–1140 (2020). https://doi.org/10.1038/s41440-020-0506-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0506-1

Keywords

This article is cited by

Search

Quick links