Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vasopressin and v1br gene expression is increased in the hypothalamic pvn of borderline hypertensive rats

Abstract

Vasopressin (VP) is a neurohypophyseal peptide best known for its role in maintaining osmotic and cardiovascular homeostasis. The main sources of VP are the supraoptic and paraventricular (PVN) nuclei of the hypothalamus, which coexpress the vasopressin V1a and V1b receptors (V1aR and V1bR). Here, we investigated the level of expression of VP and VP receptors in the PVN of borderline hypertensive rats (BHRs), a key integrative nucleus for neuroendocrine cardiovascular control. Experiments were performed in male BHRs and Wistar rats (WRs) equipped with a radiotelemetry device for continuous hemodynamic recording under baseline conditions and after saline load without or with stress. Autonomic control of the circulation was evaluated by spectral analysis of blood pressure (BP) and heart rate (HR) variability and baroreceptor reflex sensitivity (BRS) using the sequence method. Plasma VP was determined by radioimmunoassay, and VP, V1aR, and V1bR gene expression was determined by RT-qPCR. Under baseline conditions, BHRs had higher BP, lower HR, and stronger BRS than WRs. BP and HR variability was unchanged. In the PVN, overexpression of the VP and V1bR genes was found, and plasma VP was increased. Saline load downregulated V1bR mRNA expression without affecting VP mRNA expression or plasma VP and BP. Adding stress increased BP, HR, and low-frequency sympathetic spectral markers and decreased plasma VP without altering the level of expression of VP and VP receptors in the PVN. It follows that overexpression of VP and V1bR in the PVN is a characteristic trait of BHRs and that sympathetic hyperactivity underlies stress-induced hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burbach JP, Van Tol HH, Bakkus MH, Schmale H, Ivell R. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev. 2001;81:1197–267.

    CAS  PubMed  Google Scholar 

  2. Burbach JP, Van Tol HH, Bakkus MH, Schmale H, Ivell R. Quantitation of vasopressin mRNA and oxytocin mRNA in hypothalamic nuclei by solution hybridization assays. J Neurochem. 1986;47:1814–21.

    CAS  PubMed  Google Scholar 

  3. Japundzic-Zigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol. 2013;11:218–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol. 2018;315:H1200–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pyner S. Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat. 2009;38:197–208.

    CAS  PubMed  Google Scholar 

  6. Gouzènes L, Desarménien MG, Hussy N, Richard P, Moos FC. Vasopressin regularizes the phasic firing pattern of rat hypothalamic magnocellular vasopressin neurons. J Neurosci. 1998;18:1879–85.

    PubMed  PubMed Central  Google Scholar 

  7. Ludwig M, Leng G. Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci. 2006;7:126–36.

    CAS  PubMed  Google Scholar 

  8. Son SJ, Filosa JA, Potapenko ES, Biancardi VC, Zheng H, Patel KP, et al. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron. 2013;78:1036–49.

    CAS  PubMed  Google Scholar 

  9. Ribeiro N, Panizza Hdo N, Santos KM, Ferreira-Neto HC, Antunes VR. Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1369–79.

    CAS  PubMed  Google Scholar 

  10. Lozić M, Tasić T, Martin A, Greenwood M, Šarenac O, Hindmarch C, et al. Over-expression of V1A receptors in PVN modulates autonomic cardiovascular control. Pharm Res. 2016;114:185–95.

    Google Scholar 

  11. El-Werfali W, Toomasian C, Maliszewska-Scislo M, Li C, Rossi NF. Haemodynamic and renal sympathetic responses to V1b vasopressin receptor activation within the paraventricular nucleus. Exp Physiol. 2015;100:553–65.

    CAS  PubMed  Google Scholar 

  12. Lawler JE, Cox RH, Sanders BJ, Mitchell VP. The borderline hypertensive rat: A model for studying the mechanisms of environmentally induced hypertension. Health Psychol. 1988;7:137–47.

    CAS  PubMed  Google Scholar 

  13. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. NC3Rs Reporting Guidelines Working Group. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1573–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bajić D, Loncar-Turukalo T, Stojicić S, Sarenac O, Bojić T, Murphy D, et al. Temporal analysis of the spontaneous baroreceptor reflex during mild emotional stress in the rat. Stress. 2010;13:142–54.

    PubMed  Google Scholar 

  16. Turukalo TL, Bajic D, Zigon NJ. Temporal sequence parameters in isodistributional surrogate data: model and exact expressions. IEEE Trans Biomed Eng. 2011;58:16–24.

    PubMed  Google Scholar 

  17. Milutinović S, Murphy D, Japundzić-Zigon N. The role of central vasopressin receptors in the modulation of autonomic cardiovascular controls: a spectral analysis study. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1579–91.

    PubMed  Google Scholar 

  18. Parati G, Ulian L, Santucciu C, Omboni S, Mancia G. Blood pressure variability, cardiovascular risk and antihypertensive treatment. J Hypertens Suppl. 1995;13:S27–34.

    CAS  PubMed  Google Scholar 

  19. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    Google Scholar 

  20. Japundzic-Zigon N. Physiological mechanisms in regulation of blood pressure fast frequency variations. Clin Exp Hypertens. 1998;20:359–88.

    CAS  PubMed  Google Scholar 

  21. Husain MK, F. N, Shapiro M, Kagan A, Glick SM. Radioimmunoassay of arginine vasopressin in human plasma. J Clin Endocrinol Metab. 1973;37:616–25.

    CAS  PubMed  Google Scholar 

  22. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. USA: Elsevier Academic Press; 2005.

  23. Yamada Y, Yamamura Y, Chihara T, Onogawa T, Nakamura S, Yamashita T, et al. OPC-21268, a vasopressin V1 antagonist, produces hypotension in spontaneously hypertensive rats. Hypertension. 1994;23:200–4.

    CAS  PubMed  Google Scholar 

  24. Johnston CI. Vasopressin in circulatory control and hypertension. J Hypertens. 1985;3:557–69.

    CAS  PubMed  Google Scholar 

  25. Yi SS, Kim HJ, Do SG, Lee YB, Ahn HJ, Hwang IK, et al. Arginine vasopressin (AVP) expressional changes in the hypothalamic paraventricular and supraoptic nuclei of stroke-prone spontaneously hypertensive rats. Anat Cell Biol. 2012;45:114–20.

    PubMed  PubMed Central  Google Scholar 

  26. Swords BH, Wyss JM, Berecek KH. Central vasopressin receptors are upregulated by deoxycorticosterone acetate. Brain Res. 1991;559:10–6.

    CAS  PubMed  Google Scholar 

  27. Jackiewicz E, Szczepanska-Sadowska E, Dobruch J. Altered expression of angiotensin AT1a and vasopressin V1a receptors and nitric oxide synthase mRNA in the brain of rats with renovascular hypertension. J Physiol Pharmacol. 2004;55:725–37.

    CAS  PubMed  Google Scholar 

  28. van Tol HH, van den Buuse M, de Jong W, Burbach JP. Vasopressin and oxytocin gene expression in the supraoptic and paraventricular nucleus of the spontaneously hypertensive rat (SHR) during development of hypertension. Brain Res. 1988;464:303–11.

    PubMed  Google Scholar 

  29. Jung HJ, Kwon TH. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Ren Physiol. 2016;311:F1318–28.

    Google Scholar 

  30. Fujisawa Y, Miyatake A, Hayashida Y, Aki Y, Kimura S, Tamaki T, et al. Role of vasopressin on cardiovascular changes during hemorrhage in conscious rats. Am J Physiol. 1994;267:H1713–8.

    CAS  PubMed  Google Scholar 

  31. Imai Y, Kim CY, Hashimoto J, Minami N, Munakata M, Abe K. Role of vasopressin in neurocardiogenic responses to hemorrhage in conscious rats. Hypertension. 1996;27:136–43.

    CAS  PubMed  Google Scholar 

  32. Japundzic-Zigon N. Effects of nonpeptide V1a and V2 antagonists on blood pressure fast oscillations in conscious rats. Clin Exp Hypertens. 2001;23:277–92.

    CAS  PubMed  Google Scholar 

  33. Altura BM, Altura BT. Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle. Fed Proc. 1984;43:80–6.

    CAS  PubMed  Google Scholar 

  34. Brizzee BL, Walker BR. Vasopressinergic augmentation of cardiac baroreceptor reflex in conscious rats. Am J Physiol. 1990;258:R860–8.

    CAS  PubMed  Google Scholar 

  35. Shapiro RE, Miselis RR. The central neural connections of the area postrema of the rat. J Comp Neurol. 1985;234:344–64.

    CAS  PubMed  Google Scholar 

  36. Imai Y, Nolan PL, Johnston CI. Johnston, Endogenous vasopressin modulates the baroreflex sensitivity in rats. Clin Exp Pharmacol Physiol. 1983;10:289–92.

    CAS  PubMed  Google Scholar 

  37. Hasser EM, Bishop VS. Reflex effect of vasopressin after blockade of V1 receptors in the area postrema. Circ Res. 1990;67:265–71.

    CAS  PubMed  Google Scholar 

  38. Sampey DB, Burrell LM, Widdop RE. Widdop. Vasopressin V2 receptor enhances gain of baroreflex in conscious spontaneously hypertensive rats. Am J Physiol. 1999;276:R872–9.

    CAS  PubMed  Google Scholar 

  39. Japundžić-Žigon NLM, Šarenac O, Murphy D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Curr Neuropharmacol. 2020;18:14–33.

    PubMed  PubMed Central  Google Scholar 

  40. Hurbin A, Boissin-Agasse L, Orcel H, Rabié A, Joux N, Desarménien MG, et al. The V1a and V1b, but not V2, vasopressin receptor genes are expressed in the supraoptic nucleus of the rat hypothalamus, and the transcripts are essentially colocalized in the vasopressinergic magnocellular neurons. Endocrinology. 1998;139:4701–7.

    CAS  PubMed  Google Scholar 

  41. Hurbin A, Orcel H, Alonso G, Moos F, Rabié A. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology. 2002;143:456–66.

    CAS  PubMed  Google Scholar 

  42. Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62:347–504.

    CAS  PubMed  Google Scholar 

  43. DiBona GF, Rios LL. Mechanism of exaggerated diuresis in spontaneously hypertensive rats. Am J Physiol. 1978;235:409–16.

    CAS  PubMed  Google Scholar 

  44. Koepke JP, DiBona GF. High sodium intake enhances renal nerve and antinatriuretic responses to stress in spontaneously hypertensive rats. Hypertension. 1985;7:357–63.

    CAS  PubMed  Google Scholar 

  45. Koepke JP, Jones S, DiBona GF. Stress increases renal nerve activity and decreases sodium excretion in Dahl rats. Hypertension. 1988;11:334–8.

    CAS  PubMed  Google Scholar 

  46. DiBona GF, Jones SY. Renal manifestations of NaCl sensitivity in borderline hypertensive rats. Hypertension. 1991;17:44–53.

    CAS  PubMed  Google Scholar 

  47. Julien C, Malpas SC, Stauss HM. Sympathetic modulation of blood pressure variability. J Hypertens. 2001;19:1707–12.

    CAS  PubMed  Google Scholar 

  48. Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst. 1990;30:91–100.

    CAS  PubMed  Google Scholar 

  49. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–2.

    CAS  PubMed  Google Scholar 

  50. Malliani A, Lombardi F, Pagani M, Cerutti S. Power spectral analysis of cardiovascular variability in patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol. 1994;5:274–86.

    CAS  PubMed  Google Scholar 

  51. Japundžić-Žigon N, Šarenac O, Lozić M, Vasić M, Tasić T, Bajić D, et al. Sudden death: neurogenic causes, prediction and prevention. Eur J Prev Cardiol. 2018;25:29–39.

    PubMed  Google Scholar 

  52. Brown DR, Li SG, Lawler JE, Randall DC. Sympathetic control of BP and BP variability in borderline hypertensive rats on high- vs. low-salt diet. Am J Physiol. 1999;277:R650–7.

    CAS  PubMed  Google Scholar 

  53. Yagi K, Onaka T. Suppressive vasopressin response to emotional stress: the neuroactive substance that may be involved. Ann N Y Acad Sci. 1993;689:685–8.

    CAS  PubMed  Google Scholar 

  54. Krause EG, Pati D, Frazier CJ. Chronic salt-loading reduces basal excitatory input to CRH neurons in the paraventricular nucleus and accelerates recovery from restraint stress in male mice. Physiol Behav. 2017;176:189–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92:1813–64.

    CAS  PubMed  Google Scholar 

  56. Michel MC, Wieland T, Tsujimoto G. How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol. 2009;379:385–8.

    CAS  PubMed  Google Scholar 

  57. Hamdani N, van der Velden J. Lack of specificity of antibodies directed against human beta-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol. 2009;379:403–7.

    CAS  PubMed  Google Scholar 

  58. Jositsch G, Papadakis T, Haberberger RV, Wolff M, Wess J, Kummer W. Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn Schmiedebergs Arch Pharmacol. 2009;379:389–95.

    CAS  PubMed  Google Scholar 

  59. Benicky J, Hafko R, Sanchez-Lemus E, Aguilera G, Saavedra JM. Six commercially available angiotensin II AT1 receptor antibodies are non-specific. Cell Mol Neurobiol. 2012;32:1353–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hafko R, Villapol S, Nostramo R, Symes A, Sabban EL, Inagami T, et al. Commercially available angiotensin II At2 receptor antibodies are nonspecific. PLoS ONE. 2013;8:e69234.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Grimsey NL, Goodfellow CE, Scotter EL, Dowie MJ, Glass M, Graham ES. Specific detection of CB1 receptors; cannabinoid CB1 receptor antibodies are not all created equal! J Neurosci Methods. 2008;171:78–86.

    CAS  PubMed  Google Scholar 

  62. Gautron L. On the necessity of validating antibodies in the immunohistochemistry literature. Front Neuroanat. 2019;13:46

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25:150–76.

    CAS  PubMed  Google Scholar 

  64. Kashiwazaki A, Fujiwara Y, Tsuchiya H, Sakai N, Shibata K, Koshimizu TA. Subcellular localization and internalization of the vasopressin V1B receptor. Eur J Pharmacol. 2015;765:291–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Serbian Ministry of Education, Science and Technological Development (MPNT/III/41013 BS, OS, NJZ). British Heart Foundation (RG/11/28714, DM; FS/12/5/29339, DM). BBSRC (BB/J005452/1, DM, OS). Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior—Brasil (CAPES)—(Finance Code 001, ASM, JAR)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and execution of the study, the analysis of the data, and the reporting and writing of the paper.

Corresponding author

Correspondence to Nina Japundžić–Žigon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savić, B., Martin, A., Mecawi, A.S. et al. Vasopressin and v1br gene expression is increased in the hypothalamic pvn of borderline hypertensive rats. Hypertens Res 43, 1165–1174 (2020). https://doi.org/10.1038/s41440-020-0469-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0469-2

Keywords

Search

Quick links