Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased arterial stiffness and cardiovascular risk prediction in controlled hypertensive patients with coronary artery disease: post hoc analysis of FMD-J (Flow-mediated Dilation Japan) Study A

Abstract

The usefulness of brachial–ankle pulse wave velocity (baPWV), an index of arterial stiffness, is not fully known for the management of treated hypertensive patients with a history of coronary artery disease (CAD) who have blood pressure less than 130/80 mmHg, a recommended blood pressure target in the updated major hypertension guidelines. We analyzed data for 447 treated hypertensive patients with CAD enrolled in FMD-J Study A for assessment of the predictive value of baPWV for future cardiovascular events. The primary outcome was a composite of coronary events, stroke, heart failure, and sudden death. During a median follow-up period of 47.6 months, the primary outcome occurred in 64 patients. Blood pressure less than 130/80 mmHg was significantly associated with a lower risk of the composite outcome independent of other cardiovascular risk factors in treated hypertensive patients with CAD (hazard ratio, 0.59; 95% confidence interval (CI), 0.35–0.99; P = 0.04). In treated hypertensive patients with CAD who had blood pressure less than 130/80 mmHg, baPWV above the cutoff value of 1731 cm/s, derived from receiver–operator characteristic curve analysis for the composite outcome was significantly associated with a higher risk of the composite outcome independent of conventional risk factors (hazard ratio, 2.83; 95% CI, 1.02–7.91; P = 0.04). baPWV was an independent predictor of cardiovascular events in treated hypertensive patients with CAD who had blood pressure less than 130/80 mmHg, for whom measurement of baPWV is recommended for cardiovascular risk assessment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435–43.

    Article  Google Scholar 

  2. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.

    Article  Google Scholar 

  3. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels—updated overview and meta-analyses of randomized trials. J Hypertens. 2016;34:613–22.

    Article  CAS  Google Scholar 

  4. Bundy JD, Li C, Stuchlik P, Bu X, Kelly TN, Mills KT, et al. Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA Cardiol. 2017;2:775–81.

    Article  Google Scholar 

  5. Bangalore S, Kumar S, Volodarskiy A, Messerli FH. Blood pressure targets in patients with coronary artery disease: observations from traditional and Bayesian random effects meta-analysis of randomised trials. Heart. 2013;99:601–13.

    Article  Google Scholar 

  6. Okamoto R, Kumagai E, Kai H, Shibata R, Ohtsubo T, Kawano H, et al. Effects of lowering diastolic blood pressure to <80 mmHg on cardiovascular mortality and events in patients with coronary artery disease: a systematic review and meta-analysis. Hypertens Res. 2019;42:650–9.

    Article  Google Scholar 

  7. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71:e13–115.

    CAS  PubMed  Google Scholar 

  8. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36:1953–2041.

    Article  CAS  Google Scholar 

  9. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  Google Scholar 

  10. Tomiyama H, Matsumoto C, Shiina K, Yamashina A. Brachial-ankle PWV: current status and future directions as a useful marker in the management of cardiovascular disease and/or cardiovascular risk factors. J Atheroscler Thromb. 2016;23:128–46.

    Article  CAS  Google Scholar 

  11. Song Y, Xu B, Xu R, Tung R, Frank E, Tromble W, et al. Independent and joint effect of brachial-ankle pulse wave velocity and blood pressure control on incident stroke in hypertensive adults. Hypertension. 2016;68:46–53.

    Article  CAS  Google Scholar 

  12. Ohkuma T, Tomiyama H, Ninomiya T, Kario K, Hoshide S, Kita Y, et al. Proposed cutoff value of brachial-ankle pulse wave velocity for the management of hypertension. Circ J. 2017;81:1540–2.

    Article  Google Scholar 

  13. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69:1045–52.

    Article  CAS  Google Scholar 

  14. Tomiyama H, Kohro T, Higashi Y, Takase B, Suzuki T, Ishizu T, et al. A multicenter study design to assess the clinical usefulness of semi-automatic measurement of flow-mediated vasodilatation of the brachial artery. Int Heart J. 2012;53:170–5.

    Article  Google Scholar 

  15. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, et al. Endothelial dysfunction, increased arterial stiffness, and cardiovascular risk prediction in patients with coronary artery disease: FMD-J (Flow-mediated Dilation Japan) Study A. J Am Heart Assoc. 2018;7:e008588.

  16. Ogihara S, editor. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2009). Tokyo: Lifescience; 2009, p. 8–23.

  17. American Diabetes Association: clinical practice recommendations 1999. Diabetes Care. 1999;22 (Suppl 1):S1–114.

  18. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel pIII). JAMA. 2001;285:2486–97.

  19. Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper MY, DeVan AE, Anton MA, et al. Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens. 2005;19:401–6.

    Article  CAS  Google Scholar 

  20. Tanaka H, Munakata M, Kawano Y, Ohishi M, Shoji T, Sugawara J, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens. 2009;27:2022–7.

    Article  CAS  Google Scholar 

  21. Munakata M, Konno S, Miura Y, Yoshinaga K, Group JTS. Prognostic significance of the brachial-ankle pulse wave velocity in patients with essential hypertension: final results of the J-TOPP study. Hypertens Res. 2012;35:839–42.

    Article  CAS  Google Scholar 

  22. Nakamura M, Yamashita T, Yajima J, Oikawa Y, Sagara K, Koike A, et al. Brachial-ankle pulse wave velocity as a risk stratification index for the short-term prognosis of type 2 diabetic patients with coronary artery disease. Hypertens Res. 2010;33:1018–24.

    Article  Google Scholar 

  23. Sugamata W, Nakamura T, Uematsu M, Kitta Y, Fujioka D, Saito Y, et al. Combined assessment of flow-mediated dilation of the brachial artery and brachial-ankle pulse wave velocity improves the prediction of future coronary events in patients with chronic coronary artery disease. J Cardiol. 2014;64:179–84.

    Article  Google Scholar 

  24. Yamashina A, Tomiyama H, Arai T, Koji Y, Yambe M, Motobe H, et al. Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens Res. 2003;26:801–6.

    Article  Google Scholar 

  25. Lantelme P, Mestre C, Lievre M, Gressard A, Milon H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39:1083–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Megumi Wakisaka, Miki Kumiji, Ki-ichiro Kawano, and Satoko Michiyama for their excellent secretarial assistance.

Funding

Grant-in-aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (18590815 and 21590898 to YH) and a grant-in-aid of Japanese Arteriosclerosis Prevention Fund (to YH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihito Higashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruhashi, T., Soga, J., Fujimura, N. et al. Increased arterial stiffness and cardiovascular risk prediction in controlled hypertensive patients with coronary artery disease: post hoc analysis of FMD-J (Flow-mediated Dilation Japan) Study A. Hypertens Res 43, 781–790 (2020). https://doi.org/10.1038/s41440-020-0420-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0420-6

Keywords

This article is cited by

Search

Quick links