Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Review Series - Rationale and Practical Method for Lifestyle Modification

Cerebrovascular and cardiovascular diseases caused by drugs of abuse

Abstract

Drugs such as stimulants, sedatives, sleeping pills, and narcotics are associated with drug abuse and are therefore regulated by law. Physical dependence on these drugs is sometimes difficult to control despite an awareness of the problems they cause in daily life and the harm they can cause to the body. Drug dependence is a social problem worldwide, and the physical implications are serious. Many of these drugs cause cerebrovascular and cardiovascular diseases, which often require emergency medical treatment. Differential diagnosis is essential because of the likelihood of life-threatening events, especially among young people who exhibit cerebrovascular and cardiovascular diseases without any of the typical risk factors. Drugs of abuse, especially stimulants, induce a hyperadrenergic state that evokes vasoconstriction and tachycardia, as well as subsequent ischemic and hemorrhagic stroke, acute coronary syndrome, arrhythmias, and aortic dissection. Chronic drug abuse can also cause cardiac hypertrophy and left ventricular dysfunction. As a treatment for these conditions, sedative drugs can be effective but the use of vasodilators may also be required. There are concerns that the use of both alpha- and beta-adrenergic receptor blockers may cause tachycardia and increased blood pressure. Therefore, careful differential diagnosis and selection of therapeutic agents is required.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: Results from the 2018 National Survey on Drug Use and Health (HHS Publication No. PEP19-5068, NSDUH Series H-54). Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration: Rockville, MD, USA; 2019.

  2. Volkow ND, Fowler JS, Wang GJ. Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol. 1999;13:337–45.

    CAS  PubMed  Google Scholar 

  3. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39:32.

    CAS  PubMed  Google Scholar 

  4. Hatsukami DK, Fischman MW. Crack cocaine and cocaine hydrochloride. are the differences myth or reality? JAMA. 1996;276:1580–8.

    CAS  PubMed  Google Scholar 

  5. Fowler JS, Volkow ND, Wang GJ, Gatley SJ, Logan J. [(11)]Cocaine: PET Studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy. Nucl Med Biol. 2001;28:561–72.

    CAS  PubMed  Google Scholar 

  6. Jenkins, AJ, Cone, EJ. Pharmacokinetics: drug absorption, distribution, and elimination. In: Karch SB, editor. Drug abuse handbook. Boca Raton, FL, USA: CRC Press; 1998. p.151.

  7. Westover AN, McBride S, Haley RW. Stroke in young adults who abuse amphetamines or cocaine: a population-based study of hospitalized patients. Arch Gen Psychiatry. 2007;64:495–502.

    PubMed  Google Scholar 

  8. Toossi S, Hess CP, Hills NK, Josephson SA. Neurovascular complications of cocaine use at a tertiary stroke center. J Stroke Cerebrovasc Dis. 2010;19:273–8.

    PubMed  Google Scholar 

  9. Kalani R, Liotta EM, Prabhakaran S. Diagnostic yield of universal urine toxicology screening in an unselected cohort of stroke patients. PLOS ONE. 2015;10:e0144772.

    PubMed  PubMed Central  Google Scholar 

  10. McCord J, Jneid H, Hollander JE, de Lemos JA, Cercek B, Hsue P, et al. Management of cocaine-associated chest pain and myocardial infarction: a scientific statement from the American Heart Association Acute Cardiac Care Committee of The Council on Clinical Cardiology. Circulation. 2008;117:1897–907.

    PubMed  Google Scholar 

  11. Qureshi AI, Suri MF, Guterman LR, Hopkins LN. Cocaine use and the likelihood of nonfatal myocardial infarction and stroke: Data from the third national health and nutrition examination survey. Circulation. 2001;103:502–6.

    CAS  PubMed  Google Scholar 

  12. Phillips K, Luk A, Soor GS, Abraham JR, Leong S, Butany J. Cocaine cardiotoxicity: a review of the pathophysiology, pathology, and treatment options. Am J Cardiovasc Drugs. 2009;9:177–96.

    CAS  PubMed  Google Scholar 

  13. Lange RA, Cigarroa RG, Yancy CW Jr, Willard JE, Popma JJ, Sills MN, et al. Cocaine-induced coronary-artery vasoconstriction. N Engl J Med. 1989;321:1557–62.

    CAS  PubMed  Google Scholar 

  14. Kolodgie FD, Virmani R, Cornhill JF, Herderick EE, Smialek J. Increase in atherosclerosis and adventitial mast cells in cocaine abusers: an alternative mechanism of cocaine-associated coronary vasospasm and thrombosis. J Am Coll Cardiol. 1991;17:1553–60.

    CAS  PubMed  Google Scholar 

  15. Lange RA, Hillis LD. Cardiovascular complications of cocaine use. N Engl J Med. 2001;345:351–8.

    CAS  PubMed  Google Scholar 

  16. Maceira AM, Ripoll C, Cosin-Sales J, Igual B, Gavilan M, Salazar J, et al. Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson. 2014;16:26.

    PubMed  PubMed Central  Google Scholar 

  17. Om A, Warner M, Sabri N, Cecich L, Vetrovec G. Frequency of coronary artery disease and left ventricle dysfunction in cocaine users. Am J Cardiol. 1992;69:1549–52.

    CAS  PubMed  Google Scholar 

  18. Vongpatanasin W, Mansour Y, Chavoshan B, Arbique D, Victor RG. Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation. 1999;100:497–502.

    CAS  PubMed  Google Scholar 

  19. Billman GE, Hoskins RS. Cocaine-induced ventricular fibrillation: protection afforded by the calcium antagonist verapamil. FASEB J. 1988;2:2990–5.

    CAS  PubMed  Google Scholar 

  20. Hollander JE, Hoffman RS, Burstein JL, Shih RD, Thode HC Jr. Cocaine-associated myocardial infarction. mortality and complications. Cocaine-Associated Myocardial Infarction Study Group. Arch Intern Med. 1995;155:1081–6.

    CAS  PubMed  Google Scholar 

  21. Brecklin CS, Gopaniuk-Folga A, Kravetz T, Sabah S, Singh A, Arruda JA, et al. Prevalence of hypertension in chronic cocaine users. Am J Hypertens. 1998;11:1279–83.

    CAS  PubMed  Google Scholar 

  22. Wilbert-Lampen U, Seliger C, Zilker T, Arendt RM. Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine: reversal by coincubation with sigma-receptor antagonists. Circulation. 1998;98:385–90.

    CAS  PubMed  Google Scholar 

  23. Mo W, Singh AK, Arruda JA, Dunea G. Role of nitric oxide in cocaine-induced acute hypertension. Am J Hypertens. 1998;11:708–14.

    CAS  PubMed  Google Scholar 

  24. Havranek EP, Nademanee K, Grayburn PA, Eichhorn EJ. Endothelium-dependent vasorelaxation is impaired in cocaine arteriopathy. J Am Coll Cardiol. 1996;28:1168–74.

    CAS  PubMed  Google Scholar 

  25. Norris KC, Thornhill-Joynes M, Robinson C, Strickland T, Alperson BL, Witana SC, et al. Cocaine use, hypertension, and end-stage Renal Disease. Am J Kidney Dis. 2001;38:523–8.

    CAS  PubMed  Google Scholar 

  26. Fogo A, Superdock KR, Atkinson JB. Severe arteriosclerosis in the kidney of a cocaine addict. Am J Kidney Dis. 1992;20:513–5.

    CAS  PubMed  Google Scholar 

  27. Kibayashi K, Mastri AR, Hirsch CS. Cocaine induced intracerebral hemorrhage: analysis of predisposing factors and mechanisms causing hemorrhagic strokes. Hum Pathol. 1995;26:659–63.

    CAS  PubMed  Google Scholar 

  28. Fernandez WG, Hung O, Bruno GR, Galea S, Chiang WK. Factors predictive of acute renal failure and need for hemodialysis among ed patients with rhabdomyolysis. Am J Emerg Med. 2005;23:1–7.

    PubMed  Google Scholar 

  29. Hsue PY, Salinas CL, Bolger AF, Benowitz NL, Waters DD. Acute aortic dissection related to crack cocaine. Circulation. 2002;105:1592–5.

    PubMed  Google Scholar 

  30. Daniel JC, Huynh TT, Zhou W, Kougias P, El Sayed HF, Huh J, et al. acute aortic dissection associated with use of cocaine. J Vasc Surg. 2007;46:427–33.

    PubMed  Google Scholar 

  31. Bigi MA, Aslani A, Mehrpour M. Effect of chronic cocaine abuse on the elastic properties of aorta. Echocardiography. 2008;25:308–11.

    PubMed  Google Scholar 

  32. Schaiberger PH, Kennedy TC, Miller FC, Gal J, Petty TL. pulmonary hypertension associated with long-term inhalation of “Crank” methamphetamine. Chest. 1993;104:614–6.

    CAS  PubMed  Google Scholar 

  33. Andrews CM, Lucki I. Effects of cocaine on extracellular dopamine and serotonin levels in the nucleus accumbens. Psychopharmacol (Berl). 2001;155:221–9.

    CAS  Google Scholar 

  34. Ducas J, Duval D, Dasilva H, Boiteau P, Prewitt RM. Treatment of canine pulmonary hypertension: effects of norepinephrine and isoproterenol on pulmonary vascular pressure-flow characteristics. Circulation. 1987;75:235–42.

    CAS  PubMed  Google Scholar 

  35. Prosser JM, Nelson LS. The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol. 2012;8:33–42.

    PubMed  Google Scholar 

  36. Spiller HA, Ryan ML, Weston RG, Jansen J. Clinical experience with and analytical confirmation of “Bath Salts” and “Legal Highs” (Synthetic Cathinones) in the United States. Clin Toxicol (Philos). 2011;49:499–505.

    CAS  Google Scholar 

  37. Stockings E, Tran LT, Santo T, Peacock A, Larney S, Santomauro D, et al. Mortality among people with regular or problematic use of amphetamines: a systematic review and meta-analysis. Addiction. 2019;114:1738–50.

    PubMed  Google Scholar 

  38. Warrick BJ, Hill M, Hekman K, Christensen R, Goetz R, Casavant MJ, et al. A 9-State analysis of designer stimulant, “Bath Salt,” Hospital visits reported to poison control centers. Ann Emerg Med. 2013;62:244–51.

    PubMed  Google Scholar 

  39. Nicholson PJ, Quinn MJ, Dodd JD. Headshop heartache: acute mephedrone ‘meow’ myocarditis. Heart. 2010;96:2051–2.

    PubMed  Google Scholar 

  40. Westover AN, Nakonezny PA. Aortic dissection in young adults who abuse amphetamines. Am Heart J. 2010;160:315–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. De Silva DA, Wong MC, Lee MP, Chen CL, Chang HM. Amphetamine-associated ischemic stroke: clinical presentation and proposed pathogenesis. J Stroke Cerebrovasc Dis. 2007;16:185–6.

    PubMed  Google Scholar 

  42. Smith HJ, Roche AH, Jausch MF, Herdson PB. Cardiomyopathy associated with amphetamine administration. Am Heart J. 1976;91:792–7.

    CAS  PubMed  Google Scholar 

  43. Meredith CW, Jaffe C, Ang-Lee K, Saxon AJ. Implications of Chronic methamphetamine use: a literature review. Harv Rev Psychiatry. 2005;13:141–54.

    PubMed  Google Scholar 

  44. Chan P, Chen JH, Lee MH, Deng JF. Fatal and nonfatal methamphetamine intoxication in the intensive care unit. J Toxicol Clin Toxicol. 1994;32:147–55.

    CAS  PubMed  Google Scholar 

  45. Schürer S, Klingel K, Sandri M, Majunke N, Besler C, Kandolf R, et al. Clinical characteristics, histopathological features, and clinical outcome of methamphetamine-associated cardiomyopathy. JACC Heart Fail. 2017;5:435–45.

    PubMed  Google Scholar 

  46. Turnipseed SD, Richards JR, Kirk JD, Diercks DB, Amsterdam EA. Frequency of acute coronary syndrome in patients presenting to the emergency department with chest pain after methamphetamine use. J Emerg Med. 2003;24:369–73.

    PubMed  Google Scholar 

  47. Hawley LA, Auten JD, Matteucci MJ, Decker L, Hurst N, Beer W, et al. Cardiac complications of adult methamphetamine exposures. J Emerg Med. 2013;45:821–7.

    PubMed  Google Scholar 

  48. Sliman S, Waalen J, Shaw D. Methamphetamine-associated congestive heart failure: increasing prevalence and relationship of clinical outcomes to continued use or abstinence. Cardiovasc Toxicol. 2016;16:381–9.

    CAS  PubMed  Google Scholar 

  49. Lappin JM, Darke S, Farrell M. Stroke and methamphetamine use in young adults: a review. J Neurol Neurosurg Psychiatry. 2017;88:1079–91.

    PubMed  Google Scholar 

  50. Fantegrossi WE, Murnane KS, Reissig CJ. The behavioral pharmacology of hallucinogens. Biochem Pharm. 2008;75:17–33.

    CAS  PubMed  Google Scholar 

  51. Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med. 2005;352:1112–20.

    CAS  PubMed  Google Scholar 

  52. Halpern JH, Pope HG Jr. Do Hallucinogens cause residual neuropsychological toxicity? Drug Alcohol Depend. 1999;53:247–56.

    CAS  PubMed  Google Scholar 

  53. Kyriakou C, Marinelli E, Frati P, Santurro A, Afxentiou M, Zaami S, et al. NBOMe: New potent hallucinogens-pharmacology, analytical methods, toxicities, fatalities: a review. Eur Rev Med Pharm Sci. 2015;19:3270–81.

    CAS  Google Scholar 

  54. Halpern JH. Hallucinogens and dissociative agents naturally growing in the United States. Pharm Ther. 2004;102:131–8.

    CAS  Google Scholar 

  55. Blaho K, Merigian K, Winbery S, Geraci SA, Smartt C. Clinical pharmacology of lysergic acid diethylamide: case reports and review of the treatment of intoxication. Am J Ther. 1997;4:211–21.

    CAS  PubMed  Google Scholar 

  56. Klock JC, Boerner U, Becker CE. Coma, hyperthermia and bleeding associated with massive LSD overdose. A Report of Eight Cases. West J Med. 1974;120:183–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lieberman AN, Bloom W, Kishore PS, Lin JP. Carotid artery occlusion following ingestion of LSD. Stroke. 1974;5:213–5.

    CAS  PubMed  Google Scholar 

  58. Raval MV, Gaba RC, Brown K, Sato KT, Eskandari MK. Percutaneous transluminal angioplasty in the treatment of extensive LSD-Induced lower extremity vasospasm refractory to pharmacologic therapy. J Vasc Inter Radio. 2008;19:1227–30.

    Google Scholar 

  59. Arria AM, Yacoubian GS Jr, Fost E, Wish ED. The pediatric forum: ecstasy use among club rave attendees. Arch Pediatr Adolesc Med. 2002;156:295–6.

    PubMed  Google Scholar 

  60. Armenian P, Mamantov TM, Tsutaoka BT, Gerona RR, Silman EF, Wu AH, et al. Multiple MDMA (Ecstasy) overdoses at a rave event: a case series. J Intensive Care Med. 2013;28:252–8.

    PubMed  Google Scholar 

  61. Rochester JA, Kirchner JT. Ecstasy (3,4-methylenedioxymethamphetamine): history, neurochemistry, and toxicology. J Am Board Fam Pr. 1999;12:137–42.

    CAS  Google Scholar 

  62. Thompson JP. Acute effects of drugs of abuse. Clin Med (Lond). 2003;3:123–6.

    Google Scholar 

  63. Lai TI, Hwang JJ, Fang CC, Chen WJ. Methylene 3, 4 dioxymethamphetamine-induced acute myocardial infarction. Ann Emerg Med. 2003;42:759–62.

    PubMed  Google Scholar 

  64. Mas M, Farré M, de la Torre R, Roset PN, Ortuño J, Segura J, et al. Cardiovascular and neuroendocrine effects and pharmacokinetics of 3, 4-methylenedioxymethamphetamine in humans. J Pharm Exp Ther. 1999;290:136–45.

    CAS  Google Scholar 

  65. Madhok A, Boxer R, Chowdhury D. Atrial fibrillation in an adolescent-the agony of ecstasy. Pediatr Emerg Care. 2003;19:348–9.

    PubMed  Google Scholar 

  66. Duflou J, Mark A. Aortic dissection after ingestion of “ecstasy” (MDMA). Am J Forensic Med Pathol. 2000;21:261–3.

    CAS  PubMed  Google Scholar 

  67. Kahn DE, Ferraro N, Benveniste RJ. 3 Cases of primary intracranial hemorrhage associated with “molly”, a purified form of 3,4-methylenedioxymethamphetamine (MDMA). J Neurol Sci. 2012;323:257–60.

    CAS  PubMed  Google Scholar 

  68. Johnson J, Patel S, Saraf-Lavi E, Aziz-Sultan MA, Yavagal DR. Posterior spinal artery aneurysm rupture after ‘ecstasy’ abuse. BMJ Case Rep. 2014;2014:bcr2014011248–bcr2014011248.

    PubMed  PubMed Central  Google Scholar 

  69. Secades-Villa R, Garcia-Rodríguez O, Jin CJ, Wang S, Blanco C. Probability and predictors of the cannabis gateway effect: a national study. Int J Drug Policy. 2015;26:135–42.

    PubMed  Google Scholar 

  70. Vanyukov MM, Tarter RE, Kirillova GP, Kirisci L, Reynolds MD, Kreek MJ, et al. Common liability to addiction and “gateway hypothesis”: theoretical, empirical and evolutionary perspective. Drug Alcohol Depend. 2012;123 Suppl 1:S3–S17.

    PubMed  PubMed Central  Google Scholar 

  71. Jouanjus E, Lapeyre-Mestre M, Micallef J, and French Association of the Regional Abuse and Dependence Monitoring Centres (CEIP-A) Working Group on Cannabis Complications*. Cannabis use: signal of increasing risk of serious cardiovascular disorders. J Am Heart Assoc. 2014;3:e000638.

    PubMed  PubMed Central  Google Scholar 

  72. Thomas G, Kloner RA, Rezkalla S. Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: what cardiologists need to know. Am J Cardiol. 2014;113:187–90.

    CAS  PubMed  Google Scholar 

  73. Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol. 2018;15:151–66.

    CAS  PubMed  Google Scholar 

  74. Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Huestis MA. The cannabinoid CB1 receptor antagonist rimonabant attenuates the hypotensive effect of smoked marijuana in male smokers. Am Heart J. 2006;151:754.e1–754.e5.

    Google Scholar 

  75. Katsiki N, Papadopoulou SK, Fachantidou AI, Mikhailidis DP. Smoking and vascular risk: are all forms of smoking harmful to all types of vascular disease? Public Health. 2013;127:435–41.

    CAS  PubMed  Google Scholar 

  76. Goyal H, Awad HH, Ghali JK. Role of cannabis in cardiovascular disorders. J Thorac Dis. 2017;9:2079–92.

    PubMed  PubMed Central  Google Scholar 

  77. Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001;103:2805–9.

    CAS  PubMed  Google Scholar 

  78. Bonz A, Laser M, Küllmer S, Kniesch S, Babin-Ebell J, Popp V, et al. Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle. J Cardiovasc Pharm. 2003;41:657–64.

    CAS  Google Scholar 

  79. Korantzopoulos P, Liu T, Papaioannides D, Li G, Goudevenos JA. Atrial fibrillation and marijuana smoking. Int J Clin Pr. 2008;62:308–13.

    CAS  Google Scholar 

  80. Korantzopoulos P. Marijuana smoking is associated with atrial fibrillation. Am J Cardiol. 2014;113:1085–6.

    PubMed  Google Scholar 

  81. Jouanjus E, Raymond V, Lapeyre-Mestre M, Wolff V. What is the current knowledge about the cardiovascular risk for users of cannabis-based products? A Systematic Review. Curr Atheroscler Rep. 2017;19:26.

    PubMed  Google Scholar 

  82. Ducros A, Boukobza M, Porcher R, Sarov M, Valade D, Bousser MG. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain. 2007;130:3091–101.

    PubMed  Google Scholar 

  83. Delbridge TR, Yealy DM. Wide complex tachycardia. Emerg Med Clin North Am. 1995;13:903–24.

    CAS  PubMed  Google Scholar 

  84. Richards JR, Garber D, Laurin EG, Albertson TE, Derlet RW, Amsterdam EA, et al. Treatment of cocaine cardiovascular toxicity: a systematic review. Clin Toxicol (Philos). 2016;54:345–64.

    CAS  Google Scholar 

  85. Paratz ED, Cunningham NJ, MacIsaac AI. The cardiac complications of methamphetamines. Heart Lung Circ. 2016;25:325–32.

    PubMed  Google Scholar 

  86. Chen JP. Methamphetamine-associated acute myocardial infarction and cardiogenic shock with normal coronary arteries: refractory global coronary microvascular spasm. J Invas Cardiol. 2007;19:E89–E92.

    Google Scholar 

  87. Wijetunga M, Bhan R, Lindsay J, Karch S. Acute coronary syndrome and crystal methamphetamine use: a case series. Hawaii Med J. 2004;63:25.

    Google Scholar 

  88. Banerji D, Alvi RM, Afshar M, Tariq N, Rokicki A, Mulligan CP, et al. Carvedilol among patients with heart failure with a cocaine-use disorder. JACC Heart Fail. 2019;7:771–8.

    PubMed  Google Scholar 

  89. Hoskins MH, Leleiko RM, Ramos JJ, Sola S, Caneer PM, Khan BV. Effects of labetalol on hemodynamic parameters and soluble biomarkers of inflammation in acute coronary syndrome in patients with active cocaine use. J Cardiovasc Pharm Ther. 2010;15:47–52.

    CAS  Google Scholar 

  90. Sofuoglu M, Brown S, Babb DA, Pentel PR, Hatsukami DK. Effects of labetalol treatment on the physiological and subjective response to smoked cocaine. Pharm Biochem Behav. 2000;65:255–259.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Akasaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akasaki, Y., Ohishi, M. Cerebrovascular and cardiovascular diseases caused by drugs of abuse. Hypertens Res 43, 363–371 (2020). https://doi.org/10.1038/s41440-019-0367-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0367-7

Keywords

  • Drug addiction
  • Blood pressure
  • Stroke

Search

Quick links