Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of cigarette smoking on nitric oxide-sensitive and nitric oxide-insensitive soluble guanylate cyclase-mediated vascular tone regulation

Abstract

Cigarette smoking induces vascular endothelial dysfunction characterized by impaired nitric oxide (NO) bioavailability. There are two types of soluble guanylate cyclase (sGC), which is a cellular target of NO: NO-sensitive reduced form (the heme moiety with a ferrous iron) and NO-insensitive oxidized (the heme moiety with a ferric iron)/heme-free form. This study investigated the influence of cigarette smoking on NO-sensitive and NO-insensitive sGC-mediated vascular tone regulation in organ chamber experiments with isolated rat and human arteries. The rats were subcutaneously administered phosphate-buffered saline (PBS), nicotine-free cigarette smoke extract (N(−)-CSE) or nicotine-containing cigarette smoke extract (N(+)-CSE) for 4 weeks. Plasma thiobarbituric acid reactive substance (TBARS) levels were higher in the N(+)-CSE group than those in the N(−)-CSE group, and TBARS levels for these groups were higher than those for the PBS group. In the aorta and the pulmonary artery in rats administered N(−)-CSE or N(+)-CSE, acetylcholine-induced relaxation was significantly impaired compared with that in rats administered PBS; there was no significant difference in the relaxation between the N(−)-CSE and N(+)-CSE groups. However, sodium nitroprusside (NO-sensitive sGC stimulant)- and BAY 60-2770 (NO-insensitive sGC stimulant)-induced relaxations were not different among the three groups, regardless of the vessel type. In addition, in the human gastroepiploic artery, the relaxant responses to these sGC-targeting drugs were identical between nonsmokers and smokers. These findings suggest that NO-sensitive and NO-insensitive sGC-mediated vascular tone regulation functions normally even in blood vessels damaged by cigarette smoking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Katsiki N, Papadopoulou SK, Fachantidou AI, Mikhailidis DP. Smoking and vascular risk: are all forms of smoking harmful to all types of vascular disease? Public Health. 2013;127:435–41. https://doi.org/10.1016/j.puhe.2012.12.021.

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Cui R, Eshak ES, Yamagishi K, Imano H, Muraki I, et al. Association of cigarette smoking with radial augmentation index: the Circulatory Risk in Communities Study (CIRCS). Hypertens Res. 2018;41:1054–62. https://doi.org/10.1038/s41440-018-0106-5.

    Article  CAS  PubMed  Google Scholar 

  3. Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34:509–15. https://doi.org/10.1161/ATVBAHA.113.300156.

    Article  CAS  PubMed  Google Scholar 

  4. Shimosato T, Geddawy A, Tawa M, Imamura T, Okamura T. Chronic administration of nicotine-free cigarette smoke extract impaired endothelium-dependent vascular relaxation in rats via increased vascular oxidative stress. J Pharmacol Sci. 2012;118:206–14. https://doi.org/10.1254/jphs.11187FP.

    Article  CAS  PubMed  Google Scholar 

  5. Carlo WF, Villamor E, Ambalavanan N, DeMey JG, Blanco CE. Chronic exposure to cigarette smoke extract impairs endothelium-dependent relaxation of chicken embryo pulmonary arteries. Biol Neonate. 2001;80:247–50. https://doi.org/10.1159/000047151.

    Article  CAS  PubMed  Google Scholar 

  6. Ota Y, Kugiyama K, Sugiyama S, Ohgushi M, Matsumura T, Doi H, et al. Impairment of endothelium-dependent relaxation of rabbit aortas by cigarette smoke extract–role of free radicals and attenuation by captopril. Atherosclerosis. 1997;131:195–202. https://doi.org/10.1016/S0021-9150(97)06106-6.

    Article  CAS  PubMed  Google Scholar 

  7. Park JM, Chang KH, Park KH, Choi SJ, Lee K, Lee JY, et al. Differential effects between cigarette total particulate matter and cigarette smoke extract on blood and blood vessel. Toxicol Res. 2016;32:353–8. https://doi.org/10.5487/TR.2016.32.4.353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015;129:83–94. https://doi.org/10.1016/j.jphs.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  9. Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. 2019. (In press). https://doi.org/10.1007/164_2018_197.

    Google Scholar 

  10. Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, H S AK, Meurer S, et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest. 2006;116:2552–61. https://doi.org/10.1172/JCI28371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chester M, Seedorf G, Tourneux P, Gien J, Tseng N, Grover T, et al. Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2011;301:L755–64. https://doi.org/10.1152/ajplung.00138.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kraehling JR, Sessa WC. Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease. Circ Res. 2017;120:1174–82. https://doi.org/10.1161/CIRCRESAHA.117.303776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shimosato T, Tawa M, Iwasaki H, Imamura T, Okamura T. Aging does not affect soluble guanylate cyclase redox state in mouse aortas. Physiol Rep. 2016;4:e12816. https://doi.org/10.14814/phy2.12816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tawa M, Yamashita Y, Masuoka T, Nakano K, Yoshida J, Nishio M, et al. Responsiveness of rat aorta and pulmonary artery to cGMP generators in the presence of thiol or heme oxidant. J Pharmacol Sci. 2019;140:43–7. https://doi.org/10.1016/j.jphs.2019.04.002.

    Article  CAS  PubMed  Google Scholar 

  15. Kinoshita T, Tawa M, Suzuki T, Aimi Y, Asai T, Okamura T. Suppression of graft spasm by the particulate guanylyl cyclase activator in coronary bypass surgery. Ann Thorac Surg. 2017;104:122–9. https://doi.org/10.1016/j.athoracsur.2016.10.003.

    Article  PubMed  Google Scholar 

  16. Adachi H, Kakiki M, Kishi Y. Effects of a phosphodiesterase 3 inhibitor, olprinone, on rhythmical change in tension of human gastroepiploic artery. Eur J Pharmacol. 2005;528:137–43. https://doi.org/10.1016/j.ejphar.2005.10.047.

    Article  CAS  PubMed  Google Scholar 

  17. Yamaguchi Y, Matsuno S, Kagota S, Haginaka J, Kunitomo M. Oxidants in cigarette smoke extract modify low-density lipoprotein in the plasma and facilitate atherogenesis in the aorta of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis. 2001;156:109–17. https://doi.org/10.1016/S0021-9150(00)00637-7.

    Article  CAS  PubMed  Google Scholar 

  18. Sener G, Ozer Sehirli A, Ipçi Y, Cetinel S, Cikler E, Gedik N, et al. Taurine treatment protects against chronic nicotine-induced oxidative changes. Fundam Clin Pharmacol. 2005;19:155–64. https://doi.org/10.1111/j.1472-8206.2005.00322.x.

    Article  CAS  PubMed  Google Scholar 

  19. Chakkarwar VA. Fenofibrate attenuates nicotine-induced vascular endothelial dysfunction in the rat. Vascul Pharmacol. 2011;55:163–8. https://doi.org/10.1016/j.vph.2011.08.215.

    Article  CAS  PubMed  Google Scholar 

  20. Kathuria S, Mahadevan N, Balakumar P. Possible involvement of PPARγ-associated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities. Mol Cell Biochem. 2013;374:61–72. https://doi.org/10.1007/s11010-012-1505-6.

    Article  CAS  PubMed  Google Scholar 

  21. Tawa M, Kinoshita T, Asai T, Suzuki T, Imamura T, Okamura T. Influence of smoking on vascular reactivity to cGMP generators in human internal thoracic arteries. BMC Pharmacol Toxicol. 2015;16 Suppl 1:A93. https://doi.org/10.1186/2050-6511-16-S1-A93.

    Article  PubMed Central  Google Scholar 

  22. Tentolouris C, Tousoulis D, Davies G, Tsioufis C, Kallikazaros I, Michailidis A, et al. Effects of smoking on nitric oxide synthesis in epicardial normal and atheromatous coronary arteries. Int J Cardiol. 2004;95:69–73. https://doi.org/10.1016/j.ijcard.2003.05.010.

    Article  PubMed  Google Scholar 

  23. Peinado VI, Barbera JA, Ramirez J, Gomez FP, Roca J, Jover L, et al. Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Physiol. 1998;274:L908–13. https://doi.org/10.1152/ajplung.1998.274.6.L908.

    Article  CAS  PubMed  Google Scholar 

  24. Celermajer DS, Adams MR, Clarkson P, Robinson J, McCredie R, Donald A, et al. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med. 1996;334:150–4. https://doi.org/10.1056/NEJM199601183340303.

    Article  CAS  PubMed  Google Scholar 

  25. Müller-Schweinitzer E, Müller SE, Reineke DC, Kern T, Carrel TP, Eckstein FS, et al. Reactive oxygen species mediate functional differences in human radial and internal thoracic arteries from smokers. J Vasc Surg. 2010;51:438–44. https://doi.org/10.1016/j.jvs.2009.09.040.

    Article  PubMed  Google Scholar 

  26. Andersen MR, Uldbjerg N, Stender S, Sandager P, Aalkjær C. Maternal smoking and impaired endothelium-dependent nitric oxide-mediated relaxation of uterine small arteries in vitro. Am J Obstet Gynecol. 2011;204:177.e1–7. https://doi.org/10.1016/j.ajog.2010.09.006.

    Article  CAS  Google Scholar 

  27. Witte K, Hachenberger J, Castell MF, Vahl CF, Haller C. Nitric oxide-sensitive soluble guanylyl cyclase activity is preserved in internal mammary artery of type 2 diabetic patients. Diabetes. 2004;53:2640–4. https://doi.org/10.2337/diabetes.53.10.2640.

    Article  CAS  PubMed  Google Scholar 

  28. Tawa M, Shimosato T, Sakonjo H, Masuoka T, Nishio M, Ishibashi T, et al. Chronological change of vascular reactivity to cGMP generators in the balloon-injured rat carotid artery. J Vasc Res. 2019;56:109–16. https://doi.org/10.1159/000498896.

    Article  CAS  PubMed  Google Scholar 

  29. Schäfer A, Galuppo P, Fraccarollo D, Vogt C, Widder JD, Pfrang J, et al. Increased cytochrome P4502E1 expression and altered hydroxyeicosatetraenoic acid formation mediate diabetic vascular dysfunction: rescue by guanylyl-cyclase activation. Diabetes. 2010;59:2001–9. https://doi.org/10.2337/db09-1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Smoking Research Foundation and by the Grants-in-Aid for Scientific Research Program from the Japan Society for the Promotion of Science (grant no. 17K15579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Tawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawa, M., Kinoshita, T., Masuoka, T. et al. Impact of cigarette smoking on nitric oxide-sensitive and nitric oxide-insensitive soluble guanylate cyclase-mediated vascular tone regulation. Hypertens Res 43, 178–185 (2020). https://doi.org/10.1038/s41440-019-0363-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0363-y

Keywords

Search

Quick links