Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heritability and developmental plasticity of growth in an oviparous lizard

Abstract

Selective processes act on phenotypic variation although the evolutionary potential of a trait relies on the underlying heritable variation. Developmental plasticity is an important source of phenotypic variation, but it can also promote changes in genetic variation, yet we have a limited understanding of how they are both impacted. Here, we quantified the influence of developmental temperature on growth in delicate skinks (Lampropholis delicata) and partitioned total phenotypic variance using an animal model fitted with a genomic relatedness matrix. We measured mass for 261 individuals (nhot = 125, ncold = 136) over 16 months (nobservations = 3002) and estimated heritability and maternal effects over time. Our results show that lizards reared in cold developmental temperatures had consistently higher mass across development compared to lizards that were reared in hot developmental temperatures. However, developmental temperature did not impact the rate of growth. On average, additive genetic variance, maternal effects and heritability were higher in the hot developmental temperature treatment; however, these differences were not statistically significant. Heritability increased with age, whereas maternal effects decreased upon hatching but increased again at a later age, which could be driven by social competition or intrinsic changes in the expression of variation as an individual’s growth. Our work suggests that the evolutionary potential of growth is complex, age-dependent and not overtly affected by extremes in natural nest temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scatterplot showing how additive genetic variance (G), maternal effects (M), residual variance changed with age for the hot developmental treatment (nlizards = 125, red) and the cold developmental treatment (n = 136, blue).
Fig. 2: Changes in heritability and maternal effects across age.
Fig. 3: Model predictions of log-transformed mass over age from the two developmental temperatures.

Similar content being viewed by others

Data availability

Datasets and code used to generate results of this study are accessible via Open Science Framework (https://bit.ly/2Uy72id).

References

  • Andrews RM, Mathies T, Warner DA (2000) Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetol Monogr 14:420–431

    Article  Google Scholar 

  • Angilletta MJ Jr, Steury TD, Sears MW (2017) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44(6):1–12

    Google Scholar 

  • Beaman JE, White CR, Seebacher F (2016) Evolution of plasticity: mechanistic link between development and reversible acclimation. Trends Ecol Evol 31(3):237–249

    Article  PubMed  Google Scholar 

  • Beldade P, Mateus ARA, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20(7):1347–1363

    Article  PubMed  Google Scholar 

  • Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2014) Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol 23:3434–3451

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonamour S, Chevin L-M, Charmantier A, Teplitsky C (2019) Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc B: Biol Sci 374(1768):20180178–20180112

    Article  Google Scholar 

  • Booth DT (2006) Influence of incubation temperature on hatchling phenotype in reptiles. Physiol Biochem Zool 79(2):274–281

    Article  PubMed  Google Scholar 

  • Botero CA, Weissing FJ, Wright J, Rubenstein DR (2015) Evolutionary tipping points in the capacity to adapt to environmental change. Proc Natl Acad Sci USA 112(1):184–189

    Article  CAS  PubMed  ADS  Google Scholar 

  • Brown GP, Shine R (2009) Beyond size–number trade-offs: clutch size as a maternal effect. Philos Trans R Soc B: Biol Sci 364(1520):1097–1106

    Article  Google Scholar 

  • Bürkner PC (2017) brms: an R package for Bayesian multilevel models using Stan. J Stat Softw 80(1):1–28. https://doi.org/10.18637/jss.v080.i01

  • Chapple DG, Miller KA, Chaplin K, Barnett L, Thompson MB, Bray RD (2014) Biology of the invasive delicate skink (Lampropholis delicata) on Lord Howe Island. Aust J Zool 62(6):498–506

    Article  Google Scholar 

  • Chapple DG, Miller KA, Kraus F, Thompson MB (2013) Divergent introduction histories among invasive populations of the delicate skink (Lampropholis delicata): has the importance of genetic admixture in the success of biological invasions been overemphasized? Divers Distrib 19:134–146

    Article  Google Scholar 

  • Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B: Biol Sci 272(1571):1415–1425

    Article  Google Scholar 

  • Charmantier A, Kruuk LEB, Blondel J, Lambrechts MM (2004) Testing for microevolution in body size in three blue tit populations. J Evolut Biol 17(4):732–743

    Article  CAS  Google Scholar 

  • Cheetham E, Doody JS, Stewart B, Harlow P (2011) Embryonic mortality as a cost of communal nesting in the delicate skink. J Zool 283(4):234–242

    Article  Google Scholar 

  • Cheverud JM (1984) Evolution by kin selection: a quantitative genetic model illustrated by maternal performance in mice. Evolution 38(4):766–777

    Article  PubMed  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357

    Article  PubMed  PubMed Central  Google Scholar 

  • Coltman DW, Pilkington J, Kruuk LEB, Wilson K, Pemberton JM (2001) Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 55(10):2116–2125

    CAS  PubMed  Google Scholar 

  • Dahlgaard J, Hoffmann AA (2000) Stress resistance and environmental dependency of inbreeding depression in Drosophila melanogaster. Conserv Biol 14(4):1187–1192

    Article  Google Scholar 

  • Dayananda B, Gray S, Pike D, Webb JK (2016) Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard. Glob Change Biol 22(7):2405–2414

    Article  ADS  Google Scholar 

  • De Jong MJ, Alton LA, White CR, O’Bryan MK, Chapple DG, Wong BBM (2023) Long-term effects of incubation temperature on growth and thermal physiology in a small ectotherm. Philos Trans R Soc B: Biol Sci 378:20220137

    Article  Google Scholar 

  • Dmitriew C, Blows MW, Rowe L (2010) Ontogenetic change in genetic variance in size depends on growth environment. Am Nat 175(6):640–649

    Article  CAS  PubMed  Google Scholar 

  • Downes SJ, Shine R (1999) Do incubation-induced changes in a lizard’s phenotype influence its vulnerability to predators? Oecologia 120(1):9–18

    Article  PubMed  ADS  Google Scholar 

  • Elphick MJ, Shine R (1998) Longterm effects of incubation temperatures on the morphology and locomotor performance of hatchling lizards (Bassiana duperreyi, Scincidae). Biol J Linn Soc 63(3):429–447

    Article  Google Scholar 

  • Elphick MJ, Shine R (1999) Sex differences in optimal incubation temperatures in a scincid lizard species. Oecologia 118(4):431–437

    Article  PubMed  ADS  Google Scholar 

  • Eyck HJF, Buchanan KL, Crino OL, Jessop TS (2019) Effects of developmental stress on animal phenotype and performance: a quantitative review. Biol Rev 94(3):1143–1160

    Article  PubMed  Google Scholar 

  • Falconer DS (1952) The problem of environment and selection. Am Nat 86(830):293–298

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4 edn. Pearson Education

  • Fischer K, Kreyling J, Beaulieu M, Beil I, Bog M, Bonte D, et al (2021) Species-specific effects of thermal stress on the expression of genetic variation across a diverse group of plant and animal taxa under experimental conditions. Heredity 126:23–37. https://doi.org/10.1038/s41437-41020-40338-41434

  • Flatt T, Shine R, Borges-landaez PA, Downes SJ (2001) Phenotypic variation in an oviparous montane lizard (Bassiana duperreyi): the effects of thermal and hydric incubation environments. Biol J Linn Soc 74(3):339–350

    Article  Google Scholar 

  • Forster J, Hirst AG (2012) The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct Ecol 26(2):483–492

    Article  Google Scholar 

  • Gavrilets S, Scheiner SM (1993) The genetics of phenotypic plasticity. VI. Theoretical predictions for directional selection. J Evolut Biol 6:49–68

    Article  Google Scholar 

  • Gelman A, Lee D, Guo J (2015) Stan: a probabilistic programming language for Bayesian inference and optimization. J Educ Behav Stat 40(5):530–543

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407

    Article  Google Scholar 

  • Gifford ME, Robinson CD, Clay TA (2017) The influence of invasive fire ants on survival, space use, and patterns of natural selection in juvenile lizards. Biol Invasions 19(5):1461–1469

    Article  Google Scholar 

  • Goodman BA, Schwarzkopf L, Krockenberger AK (2013) Phenotypic integration in response to incubation environment adaptively influences habitat choice in a tropical lizard. Am Nat 182(5):666–673

    Article  PubMed  Google Scholar 

  • Goodman RM (2008) Latent effects of egg incubation temperature on growth in the lizard Anolis carolinensis. J Exp Zool Part A Ecol Genet Physiol 309A(9):525–533

    Article  Google Scholar 

  • Granato ISC, Galli G, de Oliveira Couto EG, e Souza MB, Mendonça LF, Fritsche-Neto R (2018) snpReady: a tool to assist breeders in genomic analysis. Mol Breed 38(8):102

    Article  Google Scholar 

  • Gruber B, Unmack PJ, Berry OF, Georges A (2018) dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699. https://doi.org/10.1111/1755-0998.12745

    Article  PubMed  Google Scholar 

  • Hansen TF, Pélabon C, Houle D (2011) Heritability is not evolvability. Evolut Biol 38:258–277

    Article  Google Scholar 

  • Hare KM, Longson CG, Pledger S, Daugherty CH (2004) Size, growth, and survival are reduced at cool incubation temperatures in the temperate lizard Oligosoma suteri (Lacertilia: Scincidae). Copeia 2004(2):383–390. https://doi.org/10.1643/CP-03-084R2

    Article  Google Scholar 

  • Hoffman AA, Parsons PA (1991) Evolutionary genetics and evolutionary stress. Oxford University Press

  • Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14(3):96–101

    Article  CAS  PubMed  Google Scholar 

  • Huisman J (2017) Pedigree reconstruction from SNP data: parentage assignment, sibship clustering and beyond. Mol Ecol Resour 17(5):1009–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Chen F, Du W-G, Chen H-L (2003) Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae). J Zool 261(4):409–416

    Article  Google Scholar 

  • Kimock CM, Dubuc C, Brent LJN, Higham JP (2019) Male morphological traits are heritable but do not predict reproductive success in a sexually-dimorphic primate. Sci Rep. 9(1):19794

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Krist M (2010) Egg size and offspring quality: a meta-analysis in birds. Biol Rev 86(3):692–716

    Article  PubMed  Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond Ser B Biol Sci 359(1446):873–890

    Article  Google Scholar 

  • Lindholm AK, Hunt J, Brooks R (2006) Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biol Lett 2(4):586–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Oxford University Press

  • Marshall DJ (2008) Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology 89(2):418–427

    Article  PubMed  Google Scholar 

  • Marshall DJ, Pettersen AK, Bode M, White CR (2020) Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat Ecol Evol 4(3):406–411

    Article  PubMed  Google Scholar 

  • Martins F, Kruuk LEB, Llewelyn J, Moritz C, Phillips B (2019) Heritability of climate-relevant traits in a rainforest skink. Heredity 122(1):41–52

    Article  PubMed  Google Scholar 

  • McAdam AG, Boutin S, Reale D, Berteaux D (2002) Maternal effects and the potential for evolution in a natural population of animals. Evolution 56:846–851

    PubMed  Google Scholar 

  • Mitchell TS, Hall JM, Warner DA (2018) Female investment in offspring size and number shifts seasonally in a lizard with single-egg clutches. Evolut Ecol 32(2):231–245

    Article  Google Scholar 

  • Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Philos Trans R Soc B Biol Sci 363(1497):1635–1645

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13(10):403–407

    Article  CAS  PubMed  Google Scholar 

  • Noble DWA, McFarlane SE, Keogh JS, Whiting MJ (2014) Maternal and additive genetic effects contribute to variation in offspring traits in a lizard. Behav Ecol 25(3):633–640

    Article  Google Scholar 

  • Noble DWA, Radersma R, Uller T (2019) Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc Natl Acad Sci USA 116(27):13452–13461

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Noble DWA, Stenhouse V, Schwanz LE (2018) Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta-analysis. Biol Rev 93(1):72–97

    Article  PubMed  Google Scholar 

  • Noordwijk AJV, Balen JHV, Scharloo W (1988) Heritability of body size in a natural population of the Great Tit (Parus major) and its relation to age and environmental conditions during growth. Genet Res 51(2):149–162

    Article  Google Scholar 

  • O’Dea RE, Lagisz M, Hendry AP, Nakagawa S (2019) Developmental temperature affects phenotypic means and variability: a meta-analysis of fish data. Fish Fish 20(5):1005–1022. https://doi.org/10.1111/faf.12394

    Article  Google Scholar 

  • Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’s hidden substrate. Nat Rev Genet 15(4):247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pick JL, Ebneter C, Hutter P, Tschirren B (2016) Disentangling genetic and prenatal maternal effects on offspring size and survival. Am Nat 188(6):628–639

    Article  PubMed  Google Scholar 

  • Qualls FJ, Shine R (2000) Post-hatching environment contributes greatly to phenotypic variation between two populations of the Australian garden skink, Lampropholis guichenoti. Biol J Linn Soc 71(2):315–341

    Article  Google Scholar 

  • Réale D, Festa‐Bianchet M, Jorgenson JT (1999) Heritability of body mass varies with age and season in wild bighorn sheep. Heredity 83:526–532

    Article  PubMed  Google Scholar 

  • Reed TE, Waples RS, Schindler DE, Hard JJ, Kinnison MT (2010) Phenotypic plasticity and population viability: the importance of environmental predictability. Proc R Soc Lond B Biol Sci 277(1699):3391–3400

    Google Scholar 

  • Roelofs D, Morgan J, Stürzenbaum S (2010) The significance of genome-wide transcriptional regulation in the evolution of stress tolerance. Evolut Ecol 24(3):527–539

    Article  Google Scholar 

  • Rollinson N, Rowe L (2015) Persistent directional selection on body size and a resolution to the paradox of stasis. Evolution 69(9):2441–2451

    Article  PubMed  Google Scholar 

  • Rowiński PK, Rogell B (2017) Environmental stress correlates with increases in both genetic and residual variances: a meta-analysis of animal studies. Evolution 71:1339–1351. https://doi.org/10.1111/evo.13201

    Article  CAS  PubMed  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET et al. (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma 18(1):529

    Article  Google Scholar 

  • Salin K, Auer SK, Anderson GJ, Selman C, Metcalfe NB (2016) Inadequate food intake at high temperatures is related to depressed mitochondrial respiratory capacity. J Exp Biol 219(9):1356–1362

    PubMed  Google Scholar 

  • Salin K, Villasevil EM, Anderson GJ, Lamarre SG, Melanson CA, McCarthy I et al. (2019) Differences in mitochondrial efficiency explain individual variation in growth performance. Proc R Soc B Biol Sci 286(1909):20191466

    Article  CAS  Google Scholar 

  • Schielzeth H, Nakagawa S (2022) Conditional repeatability and the variance explained by reaction norm variation in random slope models. Methods Ecol Evol 13:1214–1223

    Article  Google Scholar 

  • Sgrò CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93(3):241–248. https://doi.org/10.1038/sj.hdy.6800532

    Article  PubMed  Google Scholar 

  • Shine R, Harlow PS (1996) Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77(6):1808–1817

    Article  Google Scholar 

  • Sivula T, Magnusson M, Vehtari A (2020) Uncertainty in Bayesian leave-one-out cross-validation based model comparison. Preprint at arXiv:200810296

  • Sorci G, Clobert J (1999) Natural selection on hatchling body size and mass in two environments in the common lizard (Lacerta vivipara). Evolut Ecol Res 1:303–316

    Google Scholar 

  • Stillwell RC, Fox CW (2009) Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. Oikos 118(5):703–712

    Article  ADS  Google Scholar 

  • Storm MA, Angilletta MJ (2007) Rapid assimilation of yolk enhances growth and development of lizard embryos from a cold environment. J Exp Biol 210(19):3415–3421

    Article  PubMed  Google Scholar 

  • Sun B-J, Li T, Gao J, Ma L, Du W-G (2015) High incubation temperatures enhance mitochondrial energy metabolism in reptile embryos. Sci Rep 5(1):8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team RC (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Telemeco RS, Radder RS, Baird TA, Shine R (2010) Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol J Linn Soc 100(3):642–655

    Article  Google Scholar 

  • Uller T, Olsson M (2010) Offspring size and timing of hatching determine survival and reproductive output in a lizard. Oecologia 162(3):663–671

    Article  PubMed  ADS  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Verdú‐Ricoy J, Iraeta P, Salvador A, Díaz JA (2014) Phenotypic responses to incubation conditions in ecologically distinct populations of a lacertid lizard: a tale of two phylogeographic lineages. J Zool 292(3):184–191. https://doi.org/10.1111/jzo.12091

    Article  Google Scholar 

  • Wallace BP, Sotherland PR, Santidrian Tomillo P, Reina RD, Spotila JR, Paladino FV (2007) Maternal investment in reproduction and its consequences in leatherback turtles. Oecologia 152(1):37–47

    Article  PubMed  ADS  Google Scholar 

  • Warner DA, Andrews RM (2002) Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards. Biol J Linn Soc 76:105–124

    Article  Google Scholar 

  • Warner DA, Lovern MB (2014) The maternal environment affects offspring viability via an indirect effect of yolk investment on offspring size. Physiol Biochem Zool 87(2):276–287

    Article  PubMed  Google Scholar 

  • Warner DA, Shine R (2008) Determinants of dispersal distance in free-ranging juvenile lizards. Ethology 114(4):361–368

    Article  Google Scholar 

  • Weigensberg I, Roff DA (1996) Natural heritabilities: can they be reliably estimated in the laboratory? Evolution 50(6):2149–2157

    Article  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press

  • While GM, Noble DWA, Uller T, Warner DA, Riley JL, Du W-G et al. (2018) Patterns of developmental plasticity in response to incubation temperature in reptiles. J Exp Zool Part A Ecol Integr Physiol 329(4-5):162–176

    Article  Google Scholar 

  • While GM, Williamson J, Prescott G, Horvathova T, Fresnillo B, Beeton NJ et al. (2015) Adaptive responses to cool climate promotes persistence of a non-native lizard. Proc R Soc Lond B Biol Sci 282(1803):20142638

    Google Scholar 

  • Wilson AJ, Coltman DW, Pemberton JM, Overall ADJ, Byrne KA, Kruuk LEB (2005a) Maternal genetic effects set the potential for evolution in a free-living vertebrate population. J Evolut Biol 18(2):405–414

    Article  CAS  Google Scholar 

  • Wilson AJ, Kruuk LEB, Coltman DW (2005b) Ontogenetic patterns in heritable variation for body size: using random regression models in a wild ungulate population. Am Nat 166(6):E177–E192

    Article  PubMed  Google Scholar 

  • Wilson AJ, Pemberston JM, Pilkington JG, Clutton-Brock TH, Coltman DW, Kruuk LEB (2007) Quantitative genetics of growth and cryptic evolution of body size in an island population. Evolut Ecol 21(3):337–356

    Article  Google Scholar 

  • Wilson AJ, Réale D (2006) Ontogeny of additive and maternal genetic effects: lessons from domestic mammals. Am Nat 167(1):E23–E38

    Article  PubMed  Google Scholar 

  • Wilson AJ, Reale D, Clements MN, Morrissey MM, Postma E, Walling CA et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79(1):13–26

    Article  PubMed  Google Scholar 

  • Wood CW, Brodie ED (2015) Environmental effects on the structure of the G-matrix. Evolution 69(11):2927–2940

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Many volunteers and interns from Lizard Lab: Birgit Szabo, Christine Wilson, Joshua Cunningham, Victor Frichot and Matthieu Monserand. Scott Keogh and Julia Riley for their advice with SNP data.

Author information

Authors and Affiliations

Authors

Contributions

FK, DWAN, SN conceived the study. FK and DWAN collected and analysed the data. FK wrote the first draft. FK, DWAN and SN edited the manuscript.

Corresponding author

Correspondence to Daniel W. A. Noble.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Darren Obbard.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, F., Nakagawa, S. & Noble, D.W.A. Heritability and developmental plasticity of growth in an oviparous lizard. Heredity 132, 67–76 (2024). https://doi.org/10.1038/s41437-023-00660-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00660-3

Search

Quick links