Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide noninvasive prenatal screening for carriers of balanced reciprocal translocations

Abstract

Purpose

Balanced reciprocal translocation carriers are at increased risk of producing gametes with unbalanced forms of the translocation leading to miscarriage, fetal anomalies, and birth defects. We sought to determine if genome-wide cell-free DNA based noninvasive prenatal screening (gw-NIPS) could provide an alternative to prenatal diagnosis for carriers of these chromosomal rearrangements.

Methods

This pilot series comprises a retrospective analysis of gw-NIPS and clinical outcome data from 42 singleton pregnancies where one parent carried a balanced reciprocal translocation. Gw-NIPS was performed between August 2015 and March 2018. Inclusion criteria required at least one translocation segment to be ≥15 Mb in size.

Results

Forty samples (95%) returned an informative result; 7 pregnancies (17.5%) were high risk for an unbalanced translocation and confirmed after diagnostic testing. The remaining 33 informative samples were low risk and confirmed after diagnostic testing or normal newborn physical exam. Test sensitivity of 100% (95% confidence interval [CI]: 64.6–100%) and specificity of 100% (95% CI: 89.6–100%) were observed for this pilot series.

Conclusion

We demonstrate that gw-NIPS is a potential option for a majority of reciprocal translocation carriers. Further confirmation of this methodology could lead to adoption of this noninvasive alternative.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Example of genome-wide cell-free DNA based noninvasive prenatal screening (gw-NIPS) and prenatal single-nucleotide polymorphism (SNP) microarray results for t(11;22)(q23.3q11.2) unbalanced translocation analysis.
Fig. 2: Example of genome-wide cell-free DNA based noninvasive prenatal screening (gw-NIPS) and prenatal single-nucleotide polymorphism (SNP) microarray results for t(3;15)(p23;q26.1) unbalanced translocation analysis.

References

  1. 1.

    Mazloom AR, Dzakula Z, Oeth P, et al. Noninvasive prenatal detection of sex chromosomal aneuploidies by sequencing circulating cell-free DNA from maternal plasma. Prenat Diagn. 2013;33:591–597.

    CAS  Article  Google Scholar 

  2. 2.

    Bianchi DW, Parsa S, Bhatt S, et al. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology. Obstet Gynecol. 2015;125:375–382.

    CAS  Article  Google Scholar 

  3. 3.

    Wapner RJ, Babiarz JE, Levy B, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015;212:332.e1–332.e9.

    Article  Google Scholar 

  4. 4.

    Gross SJ, Stosic M, McDonald-McGinn DM, et al. Clinical experience with single-nucleotide polymorphism-based noninvasive prenatal screening for 22q11.2 deletion syndrome. Ultrasound Obstet Gynecol. 2016;47:177–183.

    CAS  Article  Google Scholar 

  5. 5.

    Pertile MD, Halks-Miller M, Flowers N. et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017;9:eaan1240.

    Article  Google Scholar 

  6. 6.

    Van Opstal D, van Maarle MC, Lichtenbelt K, et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: results of the TRIDENT study. Genet Med. 2018;20:480–485.

    Article  Google Scholar 

  7. 7.

    Zhao C, Tynan J, Ehrich M, et al. Detection of fetal subchromosomal abnormalities by sequencing circulating cell-free DNA from maternal plasma. Clin Chem. 2015;61:608–616.

    CAS  Article  Google Scholar 

  8. 8.

    van der Meij KRM, Sistermans EA, Macville MVE, et al. TRIDENT-2: national implementation of genome-wide noninvasive prenatal testing as a first-tier screening test in the Netherlands. Am J Hum Genet. 2019;105:1091–1101.

    Article  Google Scholar 

  9. 9.

    Lefkowitz RB, Tynan JA, Liu T, et al. Clinical validation of a noninvasive prenatal test for genomewide detection of fetal copy number variants. Am J Obstet Gynecol. 2016;215:227.e1–227.e16.

    Article  Google Scholar 

  10. 10.

    Sahoo T, Hovanes K, Strecker MN, Dzidic N, Commander S, Travis MK. Expanding noninvasive prenatal testing to include microdeletions and segmental aneuploidy: cause for concern? Genet Med. 2016;18:275–276.

    CAS  Article  Google Scholar 

  11. 11.

    Ehrich M, Tynan J, Mazloom A, et al. Genome-wide cfDNA screening: clinical laboratory experience with the first 10,000 cases. Genet Med. 2017;19:1332–1337.

    Article  Google Scholar 

  12. 12.

    Mei J, Wang H, Zhan L. 10p15.3p13 duplication inherited from paternal balance translocation (46,XY,t(5;10)(q35.1;p13)) identified on noninvasive prenatal testing. J Obstet Gynaecol Res. 2017;43:1076–1079.

    CAS  Article  Google Scholar 

  13. 13.

    Liu H, Gao Y, Hu Z, et al. Performance evaluation of NIPT in detection of chromosomal copy number variants using low-coverage whole-genome sequencing of plasma DNA. PLoS One. 2016;11:e0159233.

    Article  Google Scholar 

  14. 14.

    Fiorentino F, Bono S, Pizzuti F, et al. The clinical utility of genome-wide non invasive prenatal screening. Prenat Diagn. 2017;37:593–601.

    CAS  Article  Google Scholar 

  15. 15.

    Gardner RJM, Amor DJ. Gardner and Sutherland’s chromosome abnormalities and genetic counseling. 5th edition. Oxford: Oxford University Press; 2018.

    Google Scholar 

  16. 16.

    Mackie Ogilvie C, Scriven PN. Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos. Eur J Hum Genet. 2002;10:801–806.

    Article  Google Scholar 

  17. 17.

    Stern C, Pertile M, Norris H, Hale L, Baker HW. Chromosome translocations in couples with in-vitro fertilization implantation failure. Hum Reprod. 1999;14:2097–2101.

    CAS  Article  Google Scholar 

  18. 18.

    Kukulu K, Buldukoglu K, Keser I, et al. Psychological effects of amniocentesis on women and their spouses: importance of the testing period and genetic counseling. J Psychosom Obstet Gynaecol. 2006;27:9–15.

    Article  Google Scholar 

  19. 19.

    Akolekar R, Beta J, Picciarelli G, Ogilvie C, D’Antonio F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;45:16–26.

    CAS  Article  Google Scholar 

  20. 20.

    Daniel A, Hook EB, Wulf G. Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements—data from United States and Canadian laboratories. Am J Med Genet. 1989;33:14–53.

    CAS  Article  Google Scholar 

  21. 21.

    Youings S, Ellis K, Ennis S, Barber J, Jacobs P. A study of reciprocal translocations and inversions detected by light microscopy with special reference to origin, segregation, and recurrent abnormalities. Am J Med Genet A. 2004;126A:46–60.

    Article  Google Scholar 

  22. 22.

    Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.

    CAS  Article  Google Scholar 

  23. 23.

    Bianchi DW, Platt LD, Goldberg JD, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet and Gynecol. 2012;119:890–901.

    CAS  Article  Google Scholar 

  24. 24.

    Straver R, Sistermans EA, Holstege H, Visser A, Oudejans CB, Reinders MJ. WISECONDOR: detection of fetal aberrations from shallow sequencing maternal plasma based on a within-sample comparison scheme. Nucleic Acids Res. 2014;42:e31.

    CAS  Article  Google Scholar 

  25. 25.

    Kim SK, Hannum G, Geis J, et al. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. Prenat Diagn. 2015;35:810–815.

    CAS  Article  Google Scholar 

  26. 26.

    Tan YQ, Tan K, Zhang SP, et al. Single-nucleotide polymorphism microarray-based preimplantation genetic diagnosis is likely to improve the clinical outcome for translocation carriers. Hum Reprod. 2013;28:2581–2592.

    CAS  Article  Google Scholar 

  27. 27.

    Tobler KJ, Brezina PR, Benner AT, Du L, Xu X, Kearns WG. Two different microarray technologies for preimplantation genetic diagnosis and screening, due to reciprocal translocation imbalances, demonstrate equivalent euploidy and clinical pregnancy rates. J Assist Reprod Genet. 2014;31:843–850.

    Article  Google Scholar 

  28. 28.

    Ardalan A, Prieur M, Choiset A, Turleau C, Goutieres F, Girard-Orgeolet S. Intrachromosomal insertion mimicking a pericentric inversion: molecular cytogenetic characterization of a three break rearrangement of chromosome 20. Am J Med Genet A. 2005;138A:288–293.

    Article  Google Scholar 

  29. 29.

    Harton G, Braude P, Lashwood A, et al. ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum Reprod. 2011;26:14–24.

    CAS  Article  Google Scholar 

  30. 30.

    Kimelman D, Confino R, Confino E, Shulman LP, Zhang JX, Pavone ME. Do patients who achieve pregnancy using IVF-PGS do the recommended genetic diagnostic testing in pregnancy? J Assist Reprod Genet. 2018;35:1881–1885.

    Article  Google Scholar 

  31. 31.

    Lo KK, Karampetsou E, Boustred C, et al. Limited clinical utility of noninvasive prenatal testing for subchromosomal abnormalities. Am J Hum Genet. 2016;98:34–44.

    CAS  Article  Google Scholar 

  32. 32.

    Srinivasan A, Bianchi DW, Huang H, Sehnert AJ, Rava RP. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am J Hum Genet. 2013;92:167–176.

    CAS  Article  Google Scholar 

  33. 33.

    Benn P, Cuckle H. Theoretical performance of noninvasive prenatal testing for chromosome imbalances using counting of cell-free DNA fragments in maternal plasma. Prenat Diagn. 2014;34:778–783.

    CAS  Article  Google Scholar 

  34. 34.

    Chen S, Lau TK, Zhang C, et al. A method for noninvasive detection of fetal large deletions/duplications by low coverage massively parallel sequencing. Prenat Diagn. 2013;33:584–590.

    Article  Google Scholar 

  35. 35.

    Helgeson J, Wardrop J, Boomer T, et al. Clinical outcome of subchromosomal events detected by whole-genome noninvasive prenatal testing. Prenat Diagn. 2015;35:999–1004.

    CAS  Article  Google Scholar 

  36. 36.

    Srebniak MI, Vogel I, Van Opstal D. Is carriership of a balanced translocation or inversion an indication for noninvasive prenatal testing?. Expert Rev Mol Diagn. 2018;18:1–3.

    Article  Google Scholar 

  37. 37.

    Ashoor G, Poon L, Syngelaki A, Mosimann B, Nicolaides KH. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks’ gestation: effect of maternal and fetal factors. Fetal Diagn Ther. 2012;31:237–243.

    Article  Google Scholar 

  38. 38.

    Qi Z, Madaan S, Chetty S, Yu J, Wiita AP. False negative fetal cell free DNA screening for microdeletion syndromes in the presence of an unbalanced translocation involving monosomy 4p. Prenat Diagn. 2017;37:420–422.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the expert technical assistance and additional analytical support provided by R. Manser, I. Burns, S. Baeffel, T. Harrington, and A. Tsegay.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Domenic Pertile PhD.

Ethics declarations

Disclosure

The authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flowers, N.J., Burgess, T., Giouzeppos, O. et al. Genome-wide noninvasive prenatal screening for carriers of balanced reciprocal translocations. Genet Med 22, 1944–1955 (2020). https://doi.org/10.1038/s41436-020-0930-2

Download citation

Keywords

  • cell-free DNA
  • subchromosomal abnormality
  • reciprocal translocation
  • genome-wide NIPS

Further reading

Search

Quick links