Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An immunogenomic exome landscape of triple positive primary antiphospholipid patients

A Correction to this article was published on 19 March 2024

This article has been updated

Abstract

Primary antiphospholipid syndrome is characterized by thrombosis and autoantibodies directed against phospholipids or associated proteins. The genetic etiology of PAPS remains unknown. We enrolled 21 patients with thromboembolic events associated to lupus anticoagulant, anticardiolipin and anti β2 glycoprotein1 autoantibodies. We performed whole exome sequencing and a systematic variant-based analysis in genes associated with thrombosis, in candidate genes previously associated with APS or inborn errors of immunity. Data were compared to public databases and to a control cohort of 873 non-autoimmune patients. Variants were identified following a state-of-the-art pipeline. Enrichment analysis was performed by comparing with the control cohort. We found an absence of significant HLA bias and genetic heterogeneity in these patients, including when testing combinations of rare variants in genes encoding for proteins involved in thrombosis and of variants in genes linked with inborn errors of immunity. These results provide evidence of genetic heterogeneity in PAPS, even in a homogenous series of triple positive patients. At the individual scale, a combination of variants may participate to the breakdown of B cell tolerance and to the vessel damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study flowchart.
Fig. 2: Design of the WES analysis strategy.
Fig. 3: HLA analysis.

Similar content being viewed by others

Data availability

Original data are available in Supplemental material.

Change history

References

  1. Hughes GR. Thrombosis, abortion, cerebral disease, and the lupus anticoagulant. Br Med J. 1983;287:1088–89.

    Article  CAS  Google Scholar 

  2. Garcia D, Erkan D. Diagnosis and Management of the Antiphospholipid Syndrome. N Engl J Med. 2018;379:1290.

    PubMed  Google Scholar 

  3. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  CAS  PubMed  Google Scholar 

  4. Pengo V, Ruffatti A, Legnani C, Testa S, Fierro T, Marongiu F, et al. Incidence of a first thromboembolic event in asymptomatic carriers of high-risk antiphospholipid antibody profile: a multicenter prospective study. Blood. 2011;118:4714–8. https://doi.org/10.1182/blood-2011-03-340232

    Article  CAS  PubMed  Google Scholar 

  5. Dieudonné Y, Guffroy A, Poindron V, Sprauel PS, Martin T, Korganow A-S, et al. B cells in primary antiphospholipid syndrome: Review and remaining challenges. Autoimmun Rev. 2021;20:102798.

    Article  PubMed  Google Scholar 

  6. Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011;7:330–9.

    Article  CAS  PubMed  Google Scholar 

  7. Moschetti L, Dal Pozzolo L, Le Guern V, Morel N, Yelnik CM, Lambert M, et al. Gender differences in primary antiphospholipid syndrome with vascular manifestations in 433 patients from four European centres. Clin Exp Rheumatol. 2022;40:19–26.

    Article  PubMed  Google Scholar 

  8. Cervera R. Antiphospholipid syndrome. Thromb Res. 2017;151:S43–S47.

    Article  CAS  PubMed  Google Scholar 

  9. Matthey F, Walshe K, Mackie IJ, Machin SJ. Familial occurrence of the antiphospholipid syndrome. J Clin Pathol. 1989;42:495–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bansal AS, Hogan PG, Gibbs H, Frazer IH. Familial primary antiphospholipid antibody syndrome. Arthritis Rheum. 1996;39:705–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ravindran V, Rajendran S, Elias G. Primary antiphospholipid syndrome in monozygotic twins. Lupus. 2013;22:92–4.

    Article  CAS  PubMed  Google Scholar 

  12. Cevallos R, Darnige L, Arvieux J, Veyssier P, Gruel Y. Antiphospholipid and anti-beta 2 glycoprotein I antibodies in monozygotic twin sisters. J Rheumatol. 1994;21:1970–1.

    CAS  PubMed  Google Scholar 

  13. Rodríguez-García ME, Cotrina-Vinagre FJ, Bellusci M, Martínez de Aragón A, Hernández-Sánchez L, Carnicero-Rodríguez P, et al. A novel de novo MTOR gain-of-function variant in a patient with Smith-Kingsmore syndrome and Antiphospholipid syndrome. Eur J Hum Genet. 2019;27:1369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dieudonné Y, Guffroy A, Vollmer O, Carapito R, Korganow A-S. IKZF1 Loss-of-Function Variant Causes Autoimmunity and Severe Familial Antiphospholipid Syndrome. J Clin Immunol. 2019;39:353–7.

    Article  PubMed  Google Scholar 

  15. Goldstein R, Moulds JM, Smith CD, Sengar DP. MHC studies of the primary antiphospholipid antibody syndrome and of antiphospholipid antibodies in systemic lupus erythematosus. J Rheumatol. 1996;23:1173–9.

    CAS  PubMed  Google Scholar 

  16. Ortiz-Fernández L, Sawalha AH. Genetics of antiphospholipid syndrome. Curr Rheumatol Rep. 2019;21:65.

    Article  PubMed  Google Scholar 

  17. Caliz R, Atsumi T, Kondeatis E, Amengual O, Khamashta MA, Vaughan RW, et al. HLA class II gene polymorphisms in antiphospholipid syndrome: haplotype analysis in 83 Caucasoid patients. Rheumatology. 2001;40:31–6.

    Article  CAS  PubMed  Google Scholar 

  18. Domenico Sebastiani G, Minisola G, Galeazzi M. HLA class II alleles and genetic predisposition to the antiphospholipid syndrome. Autoimmun Rev. 2003;2:387–94.

    Article  PubMed  Google Scholar 

  19. Asherson RA, Doherty DG, Vergani D, Khamashta MA, Hughes GR. Major histocompatibility complex associations with primary antiphospholipid syndrome. Arthritis Rheum. 1992;35:124–5.

    Article  CAS  PubMed  Google Scholar 

  20. Prieto GA, Cabral AR, Zapata-Zuñiga M, Simón AJ, Villa AR, Alarcón-Segovia D, et al. Valine/valine genotype at position 247 of the beta2-glycoprotein I gene in Mexican patients with primary antiphospholipid syndrome: association with anti-beta2-glycoprotein I antibodies. Arthritis Rheum. 2003;48:471–4.

    Article  CAS  PubMed  Google Scholar 

  21. Swadzba J, Sanak M, Iwaniec T, Dziedzina S, Musiał J. Valine/Leucine247 polymorphism of beta2-glycoprotein I in patients with antiphospholipid syndrome: lack of association with anti-beta2-glycoprotein I antibodies. Lupus. 2006;15:218–22.

    Article  CAS  PubMed  Google Scholar 

  22. Yasuda S, Atsumi T, Matsuura E, Kaihara K, Yamamoto D, Ichikawa K, et al. Significance of valine/leucine247 polymorphism of?2-glycoprotein I in antiphospholipid syndrome: Increased reactivity of anti-?2-glycoprotein I autoantibodies to the valine247?2-glycoprotein I variant. Arthritis Rheum. 2005;52:212–8.

    Article  CAS  PubMed  Google Scholar 

  23. Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, Chen H, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135:239–51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chaturvedi S, Brodsky RA, McCrae KR. Complement in the Pathophysiology of the Antiphospholipid Syndrome. Front Immunol. 2019;10:449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barinotti A, Radin M, Cecchi I, Foddai SG, Rubini E, Roccatello D, et al. Genetic Factors in Antiphospholipid Syndrome: Preliminary Experience with Whole Exome Sequencing. IJMS. 2020;21:9551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang Y-L, Wu H, Shen X, Li P-Q, Yang X-Q, Liang L, et al. Association of STAT4 rs7574865 polymorphism with autoimmune diseases: a meta-analysis. Mol Biol Rep. 2012;39:8873–82.

    Article  CAS  PubMed  Google Scholar 

  27. Yin H, Borghi MO, Delgado-Vega AM, Tincani A, Meroni P-L. Alarcón-Riquelme, Association of STAT4 and BLK, but not BANK1 or IRF5, with primary antiphospholipid syndrome. Arthritis Rheum. 2009;60:2468–71.

    Article  CAS  PubMed  Google Scholar 

  28. Islam A, Khandker SS, Alam F, Kamal MA, Gan SH. Genetic risk factors in thrombotic primary antiphospholipid syndrome: A systematic review with bioinformatic analyses. Autoimmun Rev. 2018;17:226–43.

    Article  PubMed  Google Scholar 

  29. Iuliano A, Galeazzi M, Sebastiani GD. Antiphospholipid syndrome’s genetic and epigenetic aspects. Autoimmun Rev. 2019;18:102352.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang P, Philippot Q, Ren W, Lei W-T, Li J, Stenson PD, et al. Genome-wide detection of human variants that disrupt intronic branchpoints. Proc Natl Acad Sci USA. 2022;119:e2211194119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bigio B, Seeleuthner Y, Kerner G, Migaud M, Rosain J, Boisson B, et al. Detection of homozygous and hemizygous complete or partial exon deletions by whole-exome sequencing. NAR Genomics Bioinforma. 2021;3:lqab037.

    Article  Google Scholar 

  32. Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. 2021;53:1097–103.

    Article  CAS  PubMed  Google Scholar 

  33. Simone B, De Stefano V, Leoncini E, Zacho J, Martinelli I, Emmerich J, et al. Risk of venous thromboembolism associated with single and combined effects of Factor V Leiden, Prothrombin 20210A and Methylenetethraydrofolate reductase C677T: a meta-analysis involving over 11,000 cases and 21,000 controls. Eur J Epidemiol. 2013;28:621–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eppenberger D, Nilius H, Anagnostelis B, Huber CA, Nagler M. Current Knowledge on Factor V Leiden Mutation as a Risk Factor for Recurrent Venous Thromboembolism: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2022;9:883986.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chiasakul T, De Jesus E, Tong J, Chen Y, Crowther M, Garcia D, et al. Inherited Thrombophilia and the Risk of Arterial Ischemic Stroke: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2019;8:e012877.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gragert L, Madbouly A, Freeman J, Maiers M. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum Immunol. 2013;74:1313–20.

    Article  CAS  PubMed  Google Scholar 

  37. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42:1473–1507.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yonal I, Hindilerden F, Hancer VS, Artim-Esen B, Daglar A, Akadam B, et al. The impact of platelet membrane glycoprotein Ib alpha and Ia/IIa polymorphisms on the risk of thrombosis in the antiphospholipid syndrome. Thromb Res. 2012;129:486–91.

    Article  CAS  PubMed  Google Scholar 

  39. Ochoa E, Iriondo M, Manzano C, Fullaondo A, Villar I, Ruiz-Irastorza G, et al. LDLR and PCSK9 Are Associated with the Presence of Antiphospholipid Antibodies and the Development of Thrombosis in aPLA Carriers. PLoS One. 2016;11:e0146990.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rand JH, Wu X-X, Andree HAM, Lockwood CJ, Guller S, Scher J, et al. Pregnancy Loss in the Antiphospholipid-Antibody Syndrome — A Possible Thrombogenic Mechanism. N Engl J Med. 1997;337:154–60.

    Article  CAS  PubMed  Google Scholar 

  41. Al-Mubarak B, Abouelhoda M, Omar A, AlDhalaan H, Aldosari M, Nester M, et al. Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep. 2017;7:5679.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Alves M, Gomez-Villafuertes R, Delanty N, Farrell MA, O’Brien DF, Miras-Portugal MT, et al. Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drug-refractory epilepsy. Epilepsia. 2017;58:1603–14.

    Article  CAS  PubMed  Google Scholar 

  43. Neto NSR, Strunz CC, de Carvalho JF. Prevalence of genetic thrombophilia in primary antiphospholipid syndrome. Eur Rev Med Pharmacol Sci. 2021;25:3645–6.

    CAS  PubMed  Google Scholar 

  44. Ames PR, Margaglione M, Tommasino C, Bossone A, Iannaccone L, Brancaccio V. Impact of plasma homocysteine and prothrombin G20210 A on primary antiphospholipid syndrome. Blood Coagul Fibrinolysis. 2001;12:699–704.

    Article  CAS  PubMed  Google Scholar 

  45. Green PHR, Cellier C. Celiac disease. N Engl J Med. 2007;357:1731–43.

    Article  CAS  PubMed  Google Scholar 

  46. van Zeben D, Hazes JM, Zwinderman AH, Cats A, Schreuder GM, D’Amaro J, et al. Association of HLA-DR4 with a more progressive disease course in patients with rheumatoid arthritis. Results of a followup study. Arthritis Rheum. 1991;34:822–30.

    Article  PubMed  Google Scholar 

  47. Eikelboom JW, Weitz JI. The mTORC Pathway in the Antiphospholipid Syndrome. N Engl J Med. 2014;371:369–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the patients for participating in this study. We thank Pr. Laurent Abel (HLA analysis) and Dr Isabelle Andre (Moesin variation) for fruitful discussions. We thank the patients and their families for participating in our study.

Funding

This work was supported by Strasbourg Hospital and University, by the France’s National Research Agency (Agence Nationale de Recherche; ANR), the Investment for the Future Program (Programme des Investissements d’Avenir; PIA) through a “Laboratoire d’Excellence” (LabEx) TRANSPLANTEX [ANR-11-LABX-0070_TRANSPLANTEX] as well as by Strasbourg’s Interdisciplinary Thematic Institute (ITI) for Precision Medicine, TRANSPLANTEX NG, as part of the ITI 2021-2028 program of the University of Strasbourg, CNRS and INSERM, funded by IdEx Unistra [ANR-10-IDEX-0002] and SFRI-STRAT’US [ANR-20-SFRI-0012]. Additional funding was provided by INSERM (UMR_S 1109), the Fédération Hospitalo-Universitaire (FHU) OMICARE, MSD Avenir “Autogen”, and finally the European regional development fund (European Union) INTERREG IV (project RARENET) and V programs (project PERSONALIS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization AG, ASK, VG, RC, BB, AC, JLC Methodology AG, ASK, RC, BB, AC, JLC Investigation AG, LJ, YS, NP, VP, FM, VD, ACV, PZ, BN, AM, MJA, ASK, RC, AC, BB Data Curation ASK, AG, AC, BB, LJ, VD Writing, Review & Editing all authors, Funding Acquisition ASK,TM, RV, PSP, RC, SB, JLC, AC.

Corresponding authors

Correspondence to A. Guffroy or A. S. Korganow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Commission Nationale Informatique et Liberté (CNIL) and the Institutional Board (CPP13/48). All the enrolled subjects provided written informed consent and the study was performed according to the principles of the Helsinski declaration.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guffroy, A., Jacquel, L., Seeleuthner, Y. et al. An immunogenomic exome landscape of triple positive primary antiphospholipid patients. Genes Immun 25, 108–116 (2024). https://doi.org/10.1038/s41435-024-00255-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-024-00255-w

Search

Quick links