Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Frequency analysis of the g.7081T>G/A and g.10872T>G polymorphisms in the FCGR3A gene (CD16A) using nested PCR and their functional specific effects

Abstract

Polymorphic variants p.66L>R/H (g.7081T>G/A; rs10127939) and p.176F>V (g.10872T>G; rs396991) in FCGR3A (CD16A) have been associated with defects in cytotoxic function of natural killer (NK) cells in humans. Genotyping of these variants in genomic DNA has been ambiguous because of high degree of homology between FCGR3A and FCGR3B. We designed a strategy to genotype these polymorphisms and to evaluate their effects on NK cells' cytotoxic activity. One hundred and fifteen individuals from different geographical regions of Colombia were included. Specific primers were designed to amplify FCGR3A exons 4 and 5 encompassing g.7081T>G/A and g.10872T>G by long-range and nested polymerase chain reaction and sequencing. The binding of different monoclonal antibodies to CD16A and NK antibody-dependent cellular cytotoxicity (ADCC) were evaluated. We demonstrate that amplifying and sequencing FCGR3A allows genotyping of g.7081T>G/A and g.10872T>G without interference from FCGR3B. Allele frequencies in our population were as follows: 7081T = 0.895, 7081G = 0.065, 7081 A = 0.039, 10872T = 0.673, and 10872G = 0.326. We also observed linkage disequilibrium between variants 7081T and 10872G. Interestingly, 176FF variant affected the reactivity of MEM154 monoclonal antibody against CD16A, but it did not affect ADCC. Our studies aimed to determine whether clinical association exists between these polymorphisms and NK cell function defects in patients with compatible phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fridman WH. Fc receptors and immunoglobulin binding factors. FASEB J. 1991;5(12):2684–90.

    Article  CAS  Google Scholar 

  2. Lehrnbecher T, Foster CB, Zhu S, Leitman SF, Goldin LR, Huppi K, et al. Variant genotypes of the low-affinity Fcgamma receptors in two control populations and a review of low-affinity Fcgamma receptor polymorphisms in control and disease populations. Blood. 1999;94(12):4220–32.

    CAS  PubMed  Google Scholar 

  3. Vivier E, Nunès JA, Vély F. Natural killer cell signaling pathways. Science. 2004;306(5701):1517–9.

    Article  CAS  Google Scholar 

  4. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  Google Scholar 

  5. Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, et al. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest. 2012;122(10):3769–80.

    Article  CAS  Google Scholar 

  6. De Haas M, Koene HR, Kleijer M, de Vries E, Simsek S, van Tol MJ, et al. A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cellFc gamma RIIIa. J Immunol. 1996;156(8):2948–55.

    PubMed  Google Scholar 

  7. De Vries E, Koene HR, Vossen JM, Gratama JW, von dem Borne AE, Waaijer JL, et al. Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood. 1996;88(8):3022–7.

    PubMed  Google Scholar 

  8. Lenart M, Trzyna E, Rutkowska M, Bukowska-Strakova K, Szaflarska A, Pituch-Noworolska A, et al. The loss of the CD16 B73.1/Leu11c epitope occurring in some primary immunodeficiency diseases is not associates with the FcgammaRIIIa-48L/R/H polymorphism. Int J Mol Med. 2010;26(3):435–42.

    CAS  PubMed  Google Scholar 

  9. Dall’Ozzo S, Andres C, Bardos P, Watier H, Thibault G. Rapid single-step FCGR3A genotyping based on SYBR Green I fluorescence in real-time multiplex allele-specific PCR. J Immunol Methods. 2003;277(1-2):185–92.

    Article  Google Scholar 

  10. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059–70.

    Article  CAS  Google Scholar 

  11. Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T. Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol. 1996;103(3):408–13.

    Article  CAS  Google Scholar 

  12. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell FcgammaRIIIa, independently of theFc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90(3):1109–14.

    CAS  PubMed  Google Scholar 

  13. Koene HR, Kleijer M, Swaak AJ, Sullivan KE, Bijl M, Petri MA, et al. The Fc gammaRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum. 1998;41(10):1813–8.

    Article  CAS  Google Scholar 

  14. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgRIIIa gene. Blood. 2002;99:754–8.

    Article  CAS  Google Scholar 

  15. Oh M, Petri MA, Kim NA, Sullivan KE. Frequency of the Fc gamma RIIIA158F allele in African American patientswith systemic lupus erythematosus. J Rheumatol. 1999;26(7):1486–9.

    CAS  PubMed  Google Scholar 

  16. Leppers-van de Straat FG, van der Pol WL, Jansen MD, Sugita N, Yoshie H, Kobayashi T, et al. A novel PCR based method for direct Fc gamma receptor IIIa (CD16) allotyping. J Immunol Methods. 2000;242(1-2):127–32.

    Article  CAS  Google Scholar 

  17. Sánchez IP, Leal-Esteban LC, Orrego-Arango JC, Garcés-Samudio CG, Gómez-Arias RD, Franco JL, et al. Variation in NK cell number and function in individuals with recurrent or severe infections. Biomedica. 2014;34(1):118–31.

    Article  Google Scholar 

  18. Bowles JA, Weiner GJ. CD16 polymorphisms and NK activation induced by monoclonal antibody-coated target cells. J Immunol Methods. 2005;304(1-2):88–99.

    Article  CAS  Google Scholar 

  19. Osborne JM, Chacko GW, Brandt JT, Anderson CL. Ethnic variation in frequency of an allelic polymorphism of human Fc gamma RIIA determined with allele specific oligonucleotide probes. J Immunol Methods. 1994;173(2):207–17.

    Article  CAS  Google Scholar 

  20. Botto M, Theodoridis E, Thompson EM, Beynon HLC, Briggs D, Isenberg DA, et al. FcgRIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin Exp Immunol. 1996;104(2):264–8.

    Article  CAS  Google Scholar 

  21. Kobayashi T, Westerdaal NAC, Miyazaki A, van der Pol WL, Suzuki T, Yoshie H, et al. Relevance of immunoglobulin G Fc receptor polymorphism to recurrence of adult periodontitis in Japanese patients. Infect Immun. 1997;65(9):3556–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rascu A, Repp R, Westerdaal NAC, Kalden JR, van de Winkel JGJ. Clinical relevance of FcgR polymorphisms. Ann N Y Acad Sci. 1997;815:282–95.

    Article  CAS  Google Scholar 

  23. Salmon JE, Ng S, Yoo DH, Kim TH, Kim SY, Song GG. Altered distribution of Fcg receptor IIIA alleles in a cohort of Korean patients with lupus nephritis. Arthritis Rheum. 1999;42(4):818–9.

    Article  CAS  Google Scholar 

  24. Sugita N, Yamamoto K, Kobayashi T, Van der Pol WL, Horigome T, Yoshie H, et al. Relevance of FcgRIIIa-158V-F polymorphism to recurrence of adult periodontitis in Japanese patients. Clin Exp Immunol. 1999;117(2):350–4.

    Article  CAS  Google Scholar 

  25. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.

    Article  CAS  Google Scholar 

  26. Treon SP, Hansen M, Branagan AR, Verselis S, Emmanouilides C, Kimby E, et al. Polymorphisms in FcgRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenström’s macroglobulinemia. J Clin Oncol. 2005;23:474–81.

    Article  CAS  Google Scholar 

  27. Anolik JH, Campbell D, Felgar RE, Young F, Sanz I, Rosenblatt J, et al. The relationship of FcgRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 2003;48:455–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Colombian Institute for the Development of Science and Technology, COLCIENCIAS (Grant #111556934426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Milena Trujillo-Vargas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Romero, C.A., Sánchez, I.P., Naranjo-Piedrahita, L. et al. Frequency analysis of the g.7081T>G/A and g.10872T>G polymorphisms in the FCGR3A gene (CD16A) using nested PCR and their functional specific effects. Genes Immun 20, 39–45 (2019). https://doi.org/10.1038/s41435-017-0001-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-017-0001-0

Search

Quick links