Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Are genetically modified protozoa eligible for ATMP status? Concerning the legal categorization of an oncolytic protozoan drug candidate

Subjects

Abstract

Neospora caninum is an obligate intracellular protozoan that affects several animal species. It is not pathogenic for humans, and its ability to infect and lyse a variety of cells and stimulate the immune system makes it an interesting drug candidate in oncology. The intrinsic oncolytic properties of N. caninum have been confirmed in several preclinical models. Moreover, it can be modified to improve its safety and/or efficacy against cancer cells. In this study, we propose the legal categorization of this new biological drug candidate and the impact of modifications, notably the integration of a suicide gene, the deletion of a gene allowing its multiplication in healthy cells, and/or the insertion of a gene coding for a therapeutic protein into its genome. When unmodified, N. caninum can be categorized as a biological medicinal product, whereas modifications aimed at increasing its safety classify it as a Somatic Cell Therapy Medicinal Product, and modifications aiming to increase its efficacy or both safety and efficacy make it as a Gene Therapy Medicinal Product. This categorization is fundamental because it determines the guidelines applicable for preclinical development. These guidelines being numerous and complex, we have focused on the key requirements necessary for the development of the future medicinal product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Categorization of the drug candidate Neospora caninum depending on the genetic modifications applied.
Fig. 2: Main guidelines to be used for the development and production of the drug candidate Neospora caninum genetically modified to enhance efficacy.

Similar content being viewed by others

References

  1. Bjerkas I, Mohn SF, Presthus J. Unidentified cyst-forming sporozoon causing encephalomyelitis and myositis in dogs. Z Parasitenkd. 1984;70:271–4.

    Article  CAS  PubMed  Google Scholar 

  2. Dubey JP, Carpenter JL, Speer CA, Topper MJ, Uggla A. Newly recognized fatal protozoan disease of dogs. J Am Vet Med Assoc. 1988;192:1269–85.

    CAS  PubMed  Google Scholar 

  3. Dubey JP, Lindsay DS. A review of Neospora caninum and neosporosis. Veterinary Parasitol. 1996;67:1–59.

    Article  CAS  Google Scholar 

  4. Lantier L, Poupée-Beaugé A, di Tommaso A, Ducournau C, Epardaud M, Lakhrif Z, et al. Neospora caninum: a new class of biopharmaceuticals in the therapeutic arsenal against cancer. J Immunother Cancer. 2020;8:e001242.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li X, Qi M, He K, Liu H, Yan W, Zhao L, et al. Neospora caninum inhibits tumor development by activating the immune response and destroying tumor cells in a B16F10 melanoma model. Parasit Vectors. 2022;15:332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Battistoni A, Lantier L, Tommaso AD, Ducournau C, Lajoie L, Samimi M, et al. Nasal administration of recombinant Neospora caninum secreting IL-15/IL-15Rα inhibits metastatic melanoma development in lung. J ImmunoTher Cancer. 2023;11:e006683.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lantier L, Poupee-Beauge A, Lantier L, Ducournau C, Tommaso AD, Germon S, et al. 846 Neospora caninum – an immunotherapeutic protozoan against solid cancers. J ImmunoTher Cancer. 2020;8:A504–A505.

    Google Scholar 

  8. Lantier L, Poupée-Beaugé A, Tommaso AD, Ducournau C, Germon S, Lee GS, et al. Abstract 1712: Neospora caninum: An immunotherapeutic protozoan against cancer. Cancer Res. 2021;81:1712–1712.

    Article  Google Scholar 

  9. Ding H, Wu S, Jin Z, Zheng B, Hu Y, He K, et al. Anti-Tumor Effect of Parasitic Protozoans. Bioengineering (Basel). 2022;9:395.

    Article  CAS  PubMed  Google Scholar 

  10. European Medicines Agency. Imligyc Assessment report - EMA/734400/2015/ corr. 1. In: Committee for Medicinal Products for Human Use, (ed). London, 2015.

  11. European Union. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. 2001.

  12. European Union. Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. 2007.

  13. Guerriaud M. Les Médicaments de Thérapie Innovante - statut juridique In: LexisNexis (ed) JurisClasseur Droit Pharmaceutique, vol. Fascicule 61–70, 2022.

  14. Guerriaud M, Kohli E. RNA-based drugs and regulation: Toward a necessary evolution of the definitions issued from the European union legislation. Front Med. 2022;9:1012497.

    Article  Google Scholar 

  15. European Union. Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. 2004.

  16. European Medicines Agency. Reflection paper on classification of Advanced Therapy Medicinal Products EMA/CAT/600280/2010 rev.1. 2015.

  17. Yaeger RG. Protozoa: Structure, Classification, Growth, and Development. In: Baron S (ed) Medical Microbiology, 4th edn: Galveston (TX), 1996.

  18. Verma AK. Protozoans: Animals or Protists? Int J Life Sci. 2021;9:41-44.

  19. European Medicines Agency. Scientific recommendation on classification of advanced therapy medicinal products. EMA/348841/2012. In, 2012.

  20. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. HSV-TK Gene Transfer into Donor Lymphocytes for Control of Allogeneic Graft-Versus-Leukemia. Science. 1997;276:1719–24.

    Article  CAS  PubMed  Google Scholar 

  21. Tiberghien P, Ferrand C, Lioure B, Milpied NL, Angonin RG, Deconinck E, et al. Administration of herpes simplex–thymidine kinase–expressing donor T cells with a T-cell–depleted allogeneic marrow graft. Blood. 2001;97:63–72.

    Article  CAS  PubMed  Google Scholar 

  22. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yagyu S, Hoyos V, Del Bufalo F, Brenner MK. An Inducible Caspase-9 Suicide Gene to Improve the Safety of Therapy Using Human Induced Pluripotent Stem Cells. Mol Ther. 2015;23:1475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guercio M, Manni S, Boffa I, Caruso S, Di Cecca S, Sinibaldi M, et al. Inclusion of the Inducible Caspase 9 Suicide Gene in CAR Construct Increases Safety of CAR.CD19 T Cell Therapy in B-Cell Malignancies. Front Immunol. 2021;12:755639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stavrou M, Philip B, Traynor-White C, Davis CG, Onuoha S, Cordoba S, et al. A Rapamycin-Activated Caspase 9-Based Suicide Gene. Mol Ther. 2018;26:1266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Radke JR, White MW. Expression of herpes simplex virus thymidine kinase in Toxoplasma gondii attenuates tachyzoite virulence in mice. Infect Immun. 1999;67:5292–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. European Medicines Agency. Zalmoxis Assessment report - EMA/CHMP/589978/2016. In: Committee for Medicinal Products for Human Use, (ed). London, 2016.

  28. Lobato J, Silva Deise AO, Mineo Tiago WP, Amaral Jodi DHF, Segundo Gesmar RS, Costa-Cruz Julia M, et al. Detection of Immunoglobulin G Antibodies to Neospora caninum in Humans: High Seropositivity Rates in Patients Who Are Infected by Human Immunodeficiency Virus or Have Neurological Disorders. Clin Vaccine Immunol. 2006;13:84–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ibrahim HM, Huang P, Salem TA, Talaat RM, Nasr MI, Xuan X, et al. Short report: prevalence of Neospora caninum and Toxoplasma gondii antibodies in northern Egypt. Am J Trop Med Hyg. 2009;80:263–7.

    Article  PubMed  Google Scholar 

  30. Tranas J, Heinzen RA, Weiss LM, McAllister MM. Serological evidence of human infection with the protozoan Neospora caninum. Clin Diagn Lab Immunol. 1999;6:765–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oshiro LM, Motta-Castro AR, Freitas SZ, Cunha RC, Dittrich RL, Meirelles AC, et al. Neospora caninum and Toxoplasma gondii serodiagnosis in human immunodeficiency virus carriers. Rev Soc Bras Med Trop. 2015;48:568–72.

    Article  PubMed  Google Scholar 

  32. Duarte PO, Oshiro LM, Zimmermann NP, Csordas BG, Dourado DM, Barros JC, et al. Serological and molecular detection of Neospora caninum and Toxoplasma gondii in human umbilical cord blood and placental tissue samples. Sci Rep. 2020;10:9043.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dubey JP, Schares G, Ortega-Mora LM. Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev. 2007;20:323–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. English ED, Adomako-Ankomah Y, Boyle JP. Secreted effectors in Toxoplasma gondii and related species: determinants of host range and pathogenesis? Parasite Immunol. 2015;37:127–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Irwin CR, Hitt MM, Evans DH. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front Oncol. 2017;7:229.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Munro JB, Silva JC. Ribonucleotide reductase as a target to control apicomplexan diseases. Curr Issues Mol Biol. 2012;14:9–26.

    CAS  PubMed  Google Scholar 

  37. Arranz-Solis D, Regidor-Cerrillo J, Lourido S, Ortega-Mora LM, Saeij JPJ. Toxoplasma CRISPR/Cas9 constructs are functional for gene disruption in Neospora caninum. Int J Parasitol. 2018;48:597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mineo TWP, Chern JH, Thind AC, Mota CM, Nadipuram SM, Torres JA, et al. Efficient Gene Knockout and Knockdown Systems in Neospora caninum Enable Rapid Discovery and Functional Assessment of Novel Proteins. mSphere. 2022;7:e0089621.

    Article  PubMed  Google Scholar 

  39. Zhou Y, Husman T, Cen X, Tsao T, Brown J, Bajpai A, et al. Interleukin 15 in Cell-Based Cancer Immunotherapy. Int J Mol Sci. 2022;23:7311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kowalsky SJ, Liu Z, Feist M, Berkey SE, Ma C, Ravindranathan R, et al. Superagonist IL-15-Armed Oncolytic Virus Elicits Potent Antitumor Immunity and Therapy That Are Enhanced with PD-1 Blockade. Mol Ther. 2018;26:2476–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Isvoranu G, Surcel M, Munteanu AN, Bratu OG, Ionita-Radu F, Neagu MT, et al. Therapeutic potential of interleukin-15 in cancer (Review). Exp Ther Med. 2021;22:675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. European Medicines Agency. Guideline on xenogeneic cell-based medicinal products (EMEA/CHMP/CPWP/83508/2009). In. London, 2009.

  43. European Medicines Agency. Guideline on Human Cell-Based Medicinal Products (EMEA/CHMP/410869/2006). In. London, 2008.

  44. European Medicines Agency. Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products (EMA/CAT/80183/2014). In. London, 2018.

  45. European Medicines Agency. Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells (EMA/CAT/GTWP/671639/2008 Rev. 1 - corr). In. Amsterdam, 2020.

  46. European Medicines Agency. Guideline on the risk-based approach according to annex I part IV of Directive 2001/83/EC applied to Advanced therapy medicinal products (EMA/CAT/CPWP/686637/2011). In. London, 2013.

  47. Nolan SJ, Romano JD, Luechtefeld T, Coppens I. Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. Eukaryot Cell. 2015;14:454–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ungerechts G, Bossow S, Leuchs B, Holm PS, Rommelaere J, Coffey M, et al. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol Ther Methods Clin Dev. 2016;3:16018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stacey GN, Masters JR. Cryopreservation and banking of mammalian cell lines. Nat Protoc. 2008;3:1981–9.

    Article  CAS  PubMed  Google Scholar 

  50. Pawliw R, Farrow R, Sekuloski S, Jennings H, Healer J, Phuong T, et al. A bioreactor system for the manufacture of a genetically modified Plasmodium falciparum blood stage malaria cell bank for use in a clinical trial. Malar J. 2018;17:283.

    Article  PubMed  PubMed Central  Google Scholar 

  51. FDA. Current Good Manufacturing Practice for Phase 1 Investigational Drugs Guidance for Industry (FDA-2005-D-0157). In. USA, 2008.

  52. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Topic Q 5 D Derivation and characterisation of cell substrates used for production of biotechnological/biological products - Scientific guideline CPMP/ICH/294/95. In, 1998.

  53. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Topic Q 6 B (step 4) - Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products. In, 1999.

  54. Fox BA, Sanders KL, Rommereim LM, Guevara RB, Bzik DJ. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity. PLoS Genet. 2016;12:e1006189.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fereig RM, Nishikawa Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens. 2020;9:384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ernst TM, Fehling H, Bernin H, Zaruba MD, Bruchhaus I, Adam G, et al. Magnetic resonance imaging of pathogenic protozoan parasite Entamoeba histolytica labeled with superparamagnetic iron oxide nanoparticles. Invest Radiol. 2015;50:709–18.

    Article  CAS  PubMed  Google Scholar 

  57. Ho MS, Barr BC, Tarantal AF, Lai LT, Hendrickx AG, Marsh AE, et al. Detection of Neospora from tissues of experimentally infected rhesus macaques by PCR and specific DNA probe hybridization. J Clin Microbiol. 1997;35:1740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. European Medicines Agency. Guideline on Scientific Requirements for The Environmental Risk Assessment of Gene Therapy Medicinal Products (EMEA/CHMP/GTWP/125491/2006). In. London, 2008.

Download references

Acknowledgements

This work was carried out within the framework of Labex LipSTIC, ANR-11-LABX-0021. We thank the Region Bourgogne - Franche Comté and the FEDER. We thank Dr. Marc Sautour for his help in the phylogenetic analysis.

Funding

We were supported by the Laboratory of Excellence Labex LipSTIC, ANR-11-LABX-0021, the Region Bourgogne - Franche Comté and the FEDER.

Author information

Authors and Affiliations

Authors

Contributions

Mathieu GUERRIAUD: designed and drafted the legal and regulatory part, carried out the legal analysis, selected the key points of the guidelines. He was responsible for coordinating the writting and overseeing the several proofreading sessions. Cyril POUPET: has written the scientific sections on Neospora caninum and has discussed the scientific issues, performed the final proofreading. Zineb LAKHRIF: she has corrected the scientific parts and specifically proofread the parts concerning the protozoa. Evelyne Kohli: she has corrected the scientific parts with regard to immunology and virology, she has widely discussed the links between scientific and legal issues. Nathalie MOIRÉ: has written the scientific sections on Neospora caninum and has discussed the scientific issues, performed the final proofreading.

Corresponding author

Correspondence to Mathieu Guerriaud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerriaud, M., Poupet, C., Lakhrif, Z. et al. Are genetically modified protozoa eligible for ATMP status? Concerning the legal categorization of an oncolytic protozoan drug candidate. Gene Ther (2024). https://doi.org/10.1038/s41434-024-00445-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-024-00445-1

Search

Quick links