Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering

Abstract

Base editors are a type of double-stranded break (DSB)-free gene editing technology that has opened up new possibilities for precise manipulation of mitochondrial DNA (mtDNA). This includes cytosine and adenosine base editors and more recently guanosine base editors. Because of having low off-target and indel rates, there is a growing interest in developing and evolving this research field. Here, we provide a detailed update on DNA base editors. While base editing has widely been used for nuclear genome engineering, the growing interest in applying this technology to mitochondrial DNA has been faced with several challenges. While Cas9 protein has been shown to enter mitochondria, use of smaller Cas proteins, such as Cas12a, has higher import efficiency. However, sgRNA transfer into mitochondria is the most challenging step. sgRNA structure and ratio of Cas protein to sgRNA are both important factors for efficient sgRNA entry into mitochondria. In conclusion, while there are still several challenges to be addressed, ongoing research in this field holds the potential for new treatments and therapies for mitochondrial disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic presentation of base editors.
Fig. 2: Mitochondrial genome engineering in zygotes.

Similar content being viewed by others

References

  1. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    Article  PubMed  Google Scholar 

  2. Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther. 2022;29:3–12.

  3. Davis L, Maizels N. Two distinct pathways support gene correction by single-stranded donors at DNA nicks. Cell Rep. 2016;17:1872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Azhagiri MKK, Babu P, Venkatesan V, Thangavel S. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Res Ther. 2021;12:1–12.

    Article  Google Scholar 

  5. Eghbalsaied S, Kues W. CRISPR/Cas9-mediated target knock-in of large constructs using nocodazole and RNase HII. Sci Rep. 2023;13:2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu M, Zhang W, Xin C, Yin J, Shang Y, Ai C, et al. Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucleic Acids Res. 2021;49:8732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao J, Wang Q, Mendez-Dorantes C, Burns KH, Chiarle R. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nat Commun. 2022;13:3685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun. 2023;14:212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases, and prime editors. Nat Biotechnol. 2020;38:824–44.

    Article  CAS  PubMed  Google Scholar 

  10. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. 2016;13:1029–35.

    Article  CAS  PubMed  Google Scholar 

  12. Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. 2016;13:1036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.

    Article  PubMed  Google Scholar 

  14. Li J, Sun Y, Du J, Zhao Y, Xia L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Molecular plant. 2017;10:526–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci. 2017;60:516–9.

    Article  PubMed  Google Scholar 

  16. Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol. 2018;36:888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. 2019;571:275–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lei Z, Meng H, Lv Z, Liu M, Zhao H, Wu H, et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat Methods. 2021;18:643–51.

    Article  CAS  PubMed  Google Scholar 

  19. Ren B, Yan F, Kuang Y, Li N, Zhang D, Zhou X, et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant. 2018;11:623–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lee S, Ding N, Sun Y, Yuan T, Li J, Yuan Q, et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome-and transcriptome-wide off-target effects. Sci Adv. 2020;6:eaba1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thuronyi BW, Koblan LW, Levy JM, Yeh W-H, Zheng C, Newby GA, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. 2019;37:1070–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules. Nature. 2011;472:499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38:883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Badran AH, Liu DR. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. 2015;6:1–10.

    Article  Google Scholar 

  25. Zhao D, Li J, Li S, Xin X, Hu M, Price MA, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39:35–40.

    Article  CAS  PubMed  Google Scholar 

  26. Sun N, Zhao D, Li S, Zhang Z, Bi C, Zhang X. Reconstructed glycosylase base editors GBE2. 0 with enhanced C-to-G base editing efficiency and purity. Mol Ther. 2022;30:2452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dong X, Yang C, Ma Z, Chen M, Zhang X, Bi C. Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Rep. 2022;40:111090.

    Article  CAS  PubMed  Google Scholar 

  28. Tong H, Liu N, Wei Y, Zhou Y, Li Y, Wu D, et al. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl Sci Rev. 2023;10:nwad143.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hough RF, Bass BL. Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J Biol Chem. 1994;269:9933–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bass B, Nishikura K, Keller W, Seeburg PH, Emeson R, O’connell M, et al. A standardized nomenclature for adenosine deaminases that act on RNA. RNA. 1997;3:947.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng Y, Lorenzo C, Beal PA. DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. 2017;45:3369–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim J, Malashkevich V, Roday S, Lisbin M, Schramm VL, Almo SC. Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. 2006;45:6407–16.

    Article  CAS  PubMed  Google Scholar 

  34. Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H, et al. Highly efficient A· T to G· C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant. 2018;11:631–4.

    Article  CAS  PubMed  Google Scholar 

  35. Yang L, Zhang X, Wang L, Yin S, Zhu B, Xie L, et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. 2018;9:814–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Neugebauer ME, Hsu A, Arbab M, Krasnow NA, McElroy AN, Pandey S, et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol. 2023;41:673–85.

  37. Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38:892–900.

    Article  CAS  PubMed  Google Scholar 

  38. Lapinaite A, Knott GJ, Palumbo CM, Lin-Shiao E, Richter MF, Zhao KT, et al. DNA capture by a CRISPR-Cas9–guided adenine base editor. Science. 2020;369:566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Zhou C, Huang S, Dang L, Wei Y, He J, et al. A Cas-embedding strategy for minimizing off-target effects of DNA base editors. Nat Commun. 2020;11:1–9.

    Article  CAS  Google Scholar 

  40. Jiang L, Long J, Yang Y, Zhou L, Su J, Qin F, et al. Internally inlaid SaCas9 base editors enable window specific base editing. Theranostics. 2022;12:4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao X, Guo J, Huang S, Yu W, Li G, An L, et al. Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Mol Ther-Nucleic Acids. 2022;28:732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368:290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 2020;38:471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. 2017;35:371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. 2015;33:1293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song C-Q, et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell. 2019;73:714–26.e4.

    Article  CAS  PubMed  Google Scholar 

  47. Kim E, Koo T, Park SW, Kim D, Kim K, Cho H-Y, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. 2017;8:1–12.

    Google Scholar 

  48. Sakata RC, Ishiguro S, Mori H, Tanaka M, Tatsuno K, Ueda H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol. 2020;38:865–9.

    Article  CAS  PubMed  Google Scholar 

  49. Xie J, Huang X, Wang X, Gou S, Liang Y, Chen F, et al. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biol. 2020;18:1–14.

    Article  Google Scholar 

  50. Grünewald J, Zhou R, Lareau CA, Garcia SP, Iyer S, Miller BR, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol. 2020;38:861–4.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature biotechnology. 2020;38:856–60.

    Article  CAS  PubMed  Google Scholar 

  52. Liang Y, Xie J, Zhang Q, Wang X, Gou S, Lin L, et al. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res. 2022;50:5384–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang C, Ma Z, Wang K, Dong X, Huang M, Li Y, et al. HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing. Nat Commun. 2023;14:2430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alexeyev M. Mitochondrial DNA: the common confusions. Taylor & Francis; 2020. p. 45–47.

  55. Gustafsson CM, Falkenberg M, Larsson N-G. Maintenance and expression of mammalian mitochondrial DNA. Ann Rev Biochem. 2016;85:133–60.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao L, Sumberaz P. Mitochondrial DNA damage: prevalence, biological consequence, and emerging pathways. Chemical research in toxicology. 2020;33:2491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Falk MJ, Sondheimer N. Mitochondrial genetic diseases. Curr Opin Pediatr. 2010;22:711.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51:440–50.

    Article  CAS  PubMed  Google Scholar 

  59. Longley MJ, Nguyen D, Kunkel TA, Copeland WC. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem. 2001;276:38555–62.

    Article  CAS  PubMed  Google Scholar 

  60. Anderson AP, Luo X, Russell W, Yin YW. Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res. 2020;48:817–29.

    Article  CAS  PubMed  Google Scholar 

  61. Falkenberg M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem. 2018;62:287–96.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bacman SR, Gammage P, Minczuk M, Moraes CT. Manipulation of mitochondrial genes and mtDNA heteroplasmy. In: Methods in cell biology, vol. 155. Elsevier; 2020. p 441–87.

  63. Garcia M, Delaveau T, Goussard S, Jacq C. Mitochondrial presequence and open reading frame mediate asymmetric localization of messenger RNA. EMBO Rep. 2010;11:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brix J, Dietmeier K, Pfanner N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. Jo Biol Chem. 1997;272:20730–5.

    Article  CAS  Google Scholar 

  65. Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci. 2006;103:19689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wen W, Meinkotht JL, Tsien RY, Taylor SS. Identification of a signal for rapid export of proteins from the nucleus. Cell. 1995;82:463–73.

    Article  CAS  PubMed  Google Scholar 

  67. Murphy R, Wente SR. An RNA-export mediator with an essential nuclear export signal. Nature. 1996;383:357–60.

    Article  CAS  PubMed  Google Scholar 

  68. Antón Z, Mullally G, Ford HC, Van Der Kamp MW, Szczelkun MD, Lane JD. Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors. J Cell Sci. 2020;133:jcs248468.

    Article  PubMed  Google Scholar 

  69. Martin RP, Schneller JM, Stahl AJ, Dirheimer G. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon CUU) into yeast mitochondria. Biochemistry. 1979;18:4600–5.

    Article  CAS  PubMed  Google Scholar 

  70. Kolesnikova O, Entelis N, Kazakova H, Brandina I, Martin R, Tarassov I. Targeting of tRNA into yeast and human mitochondria: the role of anticodon nucleotides. Mitochondrion. 2002;2:95–107.

    Article  CAS  PubMed  Google Scholar 

  71. Tarassov I, Entelis N, Martin R. Mitochondrial import of a cytoplasmic lysine‐tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl‐tRNA synthetases. EMBO J. 1995;14:3461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kolesnikova O, Entelis N, Mireau H, Fox T, Martin R, Tarassov I. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science. 2000;289:1931–3.

    Article  CAS  PubMed  Google Scholar 

  73. Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA. 5 S rRNA and tRNA Import into Human Mitochondria: COMPARISON OF IN VITROREQUIREMENTS. J Biol Chem. 2001;276:45642–53.

    Article  CAS  PubMed  Google Scholar 

  74. Rubio MAT, Rinehart JJ, Krett B, Duvezin-Caubet S, Reichert AS, Söll D, et al. Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proc Natl Acad Sci. 2008;105:9186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of non-coding RNAs into human mitochondria: a critical review and emerging approaches. Cells. 2019;8:286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kazakova H, Entelis N, Martin R, Tarassov I. The aminoacceptor stem of the yeast tRNALys contains determinants of mitochondrial import selectivity. FEBS Lett. 1999;442:193–7.

    Article  CAS  PubMed  Google Scholar 

  77. Jaremko Ł, Jaremko M, Giller K, Becker S, Zweckstetter M. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science. 2014;343:1363–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can mitochondrial DNA be CRISPRized: pro and contra. IUBMB Life. 2018;70:1233–9.

    Article  CAS  PubMed  Google Scholar 

  79. Schmiderer L, Yudovich D, Oburoglu L, Hjort M, Larsson J. Site-specific CRISPR-based mitochondrial DNA manipulation is limited by gRNA import. Sci Rep. 2022;12:18687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kolesnikova O, Kazakova H, Comte C, Steinberg S, Kamenski P, Martin RP, et al. Selection of RNA aptamers imported into yeast and human mitochondria. RNA. 2010;16:926–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dovydenko I, Tarassov I, Venyaminova A, Entelis N. Method of carrier-free delivery of therapeutic RNA importable into human mitochondria: Lipophilic conjugates with cleavable bonds. Biomaterials. 2016;76:408–17.

    Article  CAS  PubMed  Google Scholar 

  82. Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet. 1997;15:212–5.

    Article  CAS  PubMed  Google Scholar 

  83. Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell. 2016;27:223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nissanka N, Minczuk M, Moraes CT. Mechanisms of mitochondrial DNA deletion formation. Trends Genet. 2019;35:235–44.

    Article  CAS  PubMed  Google Scholar 

  85. Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One. 2017;12:e0176795.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet. 2018;34:101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee H, Lee S, Baek G, Kim A, Kang B-C, Seo H, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun. 2021;12:1–6.

    Google Scholar 

  89. Qi X, Chen X, Guo J, Zhang X, Sun H, Wang J, et al. Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov. 2021;7:1–5.

    Article  Google Scholar 

  90. Chen X, Liang D, Guo J, Zhang J, Sun H, Zhang X, et al. DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov. 2022;8:1–4.

    Article  Google Scholar 

  91. Peeva V, Blei D, Trombly G, Corsi S, Szukszto MJ, Rebelo-Guiomar P, et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018;9:1–11.

    Article  CAS  Google Scholar 

  92. Tonin Y, Heckel A-M, Vysokikh M, Dovydenko I, Meschaninova M, Rötig A, et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem. 2014;289:13323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanaka M, Borgeld H-J, Zhang J, Muramatsu S-i, Gong J-S, Yoneda M, et al. Gene therapy for mitochondrial disease by delivering restriction endonucleaseSmaI into mitochondria. J Biomed Sci. 2002;9:534–41.

    CAS  PubMed  Google Scholar 

  94. Kaltimbacher V, Bonnet C, Lecoeuvre G, Forster V, Sahel J-A, Corral-Debrinski M. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNa. 2006;12:1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet. 2022;23:199–214.

  96. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 2008;36:3926–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161:459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bi R, Li Y, Xu M, Zheng Q, Zhang D-F, Li X, et al. Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing. Innovation. 2022;3:100329.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jo A, Ham S, Lee GH, Lee Y-I, Kim S, Lee Y-S, et al. Efficient mitochondrial genome editing by CRISPR/Cas9. BioMed Res Int. 2015;2015:305716.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hussain S-RA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. Front Genet. 2021;12:627050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vartanian J-P, Henry M, Marchio A, Suspène R, Aynaud M-M, Guétard D, et al. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog. 2010;6:e1000928.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mariani R, Chen D, Schröfelbauer B, Navarro F, König R, Bollman B, et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell. 2003;114:21–31.

    Article  CAS  PubMed  Google Scholar 

  103. Wolf J, Gerber AP, Keller W. tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. 2002;21:3841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sabharwal A, Kar B, Restrepo-Castillo S, Holmberg SR, Mathew ND, Kendall BL, et al. The FusX TALE Base Editor (FusXTBE) for rapid mitochondrial DNA programming of human cells in vitro and zebrafish disease models in vivo. CRISPR J. 2021;4:799–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Silva-Pinheiro P, Nash PA, Van Haute L, Mutti CD, Turner K, Minczuk M. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat Commun. 2022;13:1–9.

    Article  Google Scholar 

  106. Silva-Pinheiro P, Mutti CD, Van Haute L, Powell CA, Nash PA, Turner K, et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat Biomed Eng. 2023;7:692–703.

  107. Lou X, Shen B. Ablating all mitochondrial protein-coding genes. Nat Biomed Eng. 2023;7:609–11.

  108. Lim K, Cho S-I, Kim J-S. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat Commun. 2022;13:1–10.

    Article  Google Scholar 

  109. Cho S-I, Lee S, Mok YG, Lim K, Lee J, Lee JM, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell. 2022;185:1764–76.e12.

    Article  CAS  PubMed  Google Scholar 

  110. Schmiderer L, Yudovich D, Oburoglu L, Hjort M, Larsson J. Site-specific CRISPR-based mitochondrial DNA manipulation is limited by gRNA import. Sci Rep. 2022;12:1–9.

    Article  Google Scholar 

  111. Eghbalsaied S, Hyder I, Kues WA. A versatile bulk electrotransfection protocol for murine embryonic fibroblasts and iPS cells. Sci Rep. 2020;10:1–10.

    Article  Google Scholar 

  112. Sieber F, Duchêne A-M, Maréchal-Drouard L. Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. Int Rev Cell Mol Biol. 2011;287:145–90.

    Article  CAS  PubMed  Google Scholar 

  113. Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15:321–34.

    Article  CAS  PubMed  Google Scholar 

  114. Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel A-M, Lombès A, et al. Correction of the consequences of mitochondrial 3243A> G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res. 2011;39:8173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schneider A. Mitochondrial tRNA import and its consequences for mitochondrial translation. Annual Rev Biochem. 2011;80:1033.

    Article  CAS  Google Scholar 

  116. Goswami S, Dhar G, Mukherjee S, Mahata B, Chatterjee S, Home P, et al. A bifunctional tRNA import receptor from Leishmania mitochondria. Proc Natl Acad Sciences. 2006;103:8354–9.

    Article  CAS  Google Scholar 

  117. Smirnov A, Entelis N, Krasheninnikov I, Martin R, Tarassov I. Specific features of 5S rRNA structure—its interactions with macromolecules and possible functions. Biochemistry. 2008;73:1418–37.

    CAS  PubMed  Google Scholar 

  118. Hinrichsen I, Bolle N, Paun L, Kempken F. RNA processing in plant mitochondria is independent of transcription. Plant Mol Biol. 2009;70:663–8.

    Article  CAS  PubMed  Google Scholar 

  119. Grünewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol. 2019;37:1041–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36:843–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nguyen Tran MT, Mohd Khalid MKN, Wang Q, Walker JK, Lidgerwood GE, Dilworth KL, et al. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing. Nat Commun. 2020;11:1–10.

    Article  Google Scholar 

  122. Wang G, Xu Z, Wang F, Huang Y, Xin Y, Liang S, et al. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biol. 2022;20:1–15.

    Article  Google Scholar 

  123. Chen L, Zhu B, Ru G, Meng H, Yan Y, Hong M, et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 2023;41:663–72.

Download references

Funding

This project was partly funded by the grant number: Ref 3.4 - IRN - 1191261 - GF-E from the Alexander von Humboldt Foundation, Germany. The authors confirm that their research is supported by an institution that is primarily involved in education or research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing the original draft: SE. Manuscript content enrichment, overview, and editing: CL, SRB, SF, and BP. Tables, Figures, and graphical design: RAH, SRB, and SE.

Corresponding authors

Correspondence to Shahin Eghbalsaied or Stephen Frankenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eghbalsaied, S., Lawler, C., Petersen, B. et al. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Ther (2024). https://doi.org/10.1038/s41434-023-00434-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-023-00434-w

Search

Quick links