Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpression of KCNN4 channels in principal neurons produces an anti-seizure effect without reducing their coding ability

Abstract

Gene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K+ channels has been proposed as a treatment due to the outstanding ability of K+ channels to hyperpolarize neurons. However, the effects of K+ channel overexpression on cell physiology remain to be investigated. Here we report an adeno-associated virus (AAV) vector designed to reduce epileptiform activity specifically in excitatory pyramidal neurons by expressing the human Ca2+-gated K+ channel KCNN4 (KCa3.1). Electrophysiological and pharmacological experiments in acute brain slices showed that KCNN4-transduced cells exhibited a Ca2+-dependent slow afterhyperpolarization that significantly decreased the ability of KCNN4-positive neurons to generate high-frequency spike trains without affecting their lower-frequency coding ability and action potential shapes. Antiepileptic activity tests showed potent suppression of pharmacologically induced seizures in vitro at both single cell and local field potential levels with decreased spiking during ictal discharges. Taken together, our findings strongly suggest that the AAV-based expression of the KCNN4 channel in excitatory neurons is a promising therapeutic intervention as gene therapy for epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Viral expression of KCNN4 (KCa3.1 channel) in thy1-positive L5 neocortical neurons that natively lacked its expression before transduction.
Fig. 2: TRAM-34, a selective blocker of KCa3.1 (KCNN4) channels blocks Ca2 + -induced outward current in KCNN4+ HEK293 cells but does not affect sAHP in KCNN4+ neurons.
Fig. 3: Comparison of frequency transfer functions of KCNN4+ neurons vs control neurons using injection of fluctuating noise.
Fig. 4: KCNN4 overexpression reduces ictal activity in the entorhinal cortex of C57BL/6 J mice in the 4-aminopyridine in vitro model.
Fig. 5: The viral transduction of a neuron by KCa3.1 channels significantly reduced the contribution of this neuron to the generation of epileptiform activity in 4-aminopyridine model in brain slices.

Similar content being viewed by others

Data availability

All relevant data supporting the key findings of this study are available within the article or from corresponding authors on request.

References

  1. Drew L. Gene therapy targets epilepsy. Nature. 2018;564:S10–s11.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bernard C. Treating Epilepsy with a Light Potassium Diet. Sci Transl Med. 2012;4:161fs40–161fs40.

    Article  PubMed  Google Scholar 

  3. Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets. 2021;25:223–35.

    Article  CAS  PubMed  Google Scholar 

  4. Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012;4:161ra152.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Snowball A, Chabrol E, Wykes RC, Shekh-Ahmad T, Cornford JH, Lieb A, et al. Epilepsy Gene Therapy Using an Engineered Potassium Channel. J Neurosci. 2019;39:3159–69.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Magloire V, Cornford J, Lieb A, Kullmann DM, Pavlov I. KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat Commun. 2019;10:1225.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Agostinho AS, Mietzsch M, Zangrandi L, Kmiec I, Mutti A, Kraus L, et al. Dynorphin-based “release on demand” gene therapy for drug-resistant temporal lobe epilepsy. EMBO Mol Med. 2019;11:e9963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiu Y, O’Neill N, Maffei B, Zourray C, Almacellas-Barbanoj A, Carpenter JC, et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science (New York, N.Y.). 2022;378:523–32.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kohling R, Wolfart J. Potassium Channels in Epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022871.

  10. Masnada S, Hedrich UBS, Gardella E, Schubert J, Kaiwar C, Klee EW, et al. Clinical spectrum and genotype-phenotype associations of KCNA2-related encephalopathies. Brain. 2017;140:2337–54.

    Article  PubMed  Google Scholar 

  11. Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015;47:39–46.

    Article  CAS  PubMed  Google Scholar 

  12. Singh B, Ogiwara I, Kaneda M, Tokonami N, Mazaki E, Baba K, et al. A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis. 2006;24:245–53.

    Article  CAS  PubMed  Google Scholar 

  13. Corbett MA, Bellows ST, Li M, Carroll R, Micallef S, Carvill GL, et al. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy. Neurology. 2016;87:1975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simons C, Rash LD, Crawford J, Ma L, Cristofori-Armstrong B, Miller D, et al. Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nat Genet. 2015;47:73–77.

    Article  CAS  PubMed  Google Scholar 

  15. Lee H, Lin MC, Kornblum HI, Papazian DM, Nelson SF. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet. 2014;23:3481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leo A, Citraro R, Constanti A, De Sarro G, Russo E. Are big potassium-type Ca(2+)-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets. 2015;19:911–26.

    Article  CAS  PubMed  Google Scholar 

  17. Schorge S, Walker MC, Kullmann DM, Snowball A, Chabrol E. Expression vectors comprising engineered genes. WIPO (PCT). UK: Ucl Business Plc, 2018. (PCT) W, (ed).

    Google Scholar 

  18. Kole MH, Letzkus JJ, Stuart GJ. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron. 2007;55:633–47.

    Article  CAS  PubMed  Google Scholar 

  19. Foust AJ, Yu Y, Popovic M, Zecevic D, McCormick DA. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J Neurosci. 2011;31:15490–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature. 2006;441:761–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Roshchin MV, Matlashov ME, Ierusalimsky VN, Balaban PM, Belousov VV, Kemenes G, et al. A BK channel-mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing. Sci Adv. 2018;4:eaat1357.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. King B, Rizwan AP, Asmara H, Heath NC, Engbers JD, Dykstra S, et al. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep. 2015;11:175–82.

    Article  CAS  PubMed  Google Scholar 

  23. Roshchin MV, Ierusalimsky VN, Balaban PM, Nikitin ES. Ca(2+)-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons. Sci Rep. 2020;10:14484.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca(2+) -activated K(+) channels and Na(+) /K(+) -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus. 2018;28:338–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guan D, Armstrong WE, Foehring RC. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca(2)(+) dependence and differential modulation by norepinephrine. J Neurophysiol. 2015;113:2014–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vigneault P, Parent S, Kanda P, Michie C, Davis DR, Nattel S. Electrophysiological engineering of heart-derived cells with calcium-dependent potassium channels improves cell therapy efficacy for cardioprotection. Nat Commun. 2021;12:4963.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bulk E, Ay AS, Hammadi M, Ouadid-Ahidouch H, Schelhaas S, Hascher A, et al. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer. 2015;137:1306–17.

    Article  CAS  PubMed  Google Scholar 

  28. Turner KL, Honasoge A, Robert SM, McFerrin MM, Sontheimer H. A proinvasive role for the Ca(2+) -activated K(+) channel KCa3.1 in malignant glioma. Glia. 2014;62:971–81.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Du Y, Song W, Chen J, Chen H, Xuan Z, Zhao L, et al. The potassium channel KCa3.1 promotes cell proliferation by activating SKP2 and metastasis through the EMT pathway in hepatocellular carcinoma. Int J Cancer. 2019;145:503–16.

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZH, Shen B, Yao HL, Jia YC, Ren J, Feng YJ, et al. Blockage of intermediate-conductance-Ca(2+) -activated K(+) channels inhibits progression of human endometrial cancer. Oncogene. 2007;26:5107–14.

    Article  CAS  PubMed  Google Scholar 

  31. Nathanson JL, Yanagawa Y, Obata K, Callaway EM. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience. 2009;161:441–50.

    Article  CAS  PubMed  Google Scholar 

  32. Franklin KBJ. The mouse brain in stereotaxic coordinates / Keith B.J. Franklin, George Paxinos. Amsterdam: Elsevier; 2008.

    Google Scholar 

  33. Aseyev N, Roshchin M, Ierusalimsky VN, Balaban PM, Nikitin ES. Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices. J Neurosci Methods. 2013;212:17–27.

    Article  PubMed  Google Scholar 

  34. Ilin V, Malyshev A, Wolf F, Volgushev M. Fast computations in cortical ensembles require rapid initiation of action potentials. J Neurosci. 2013;33:2281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nikitin ES, Bal NV, Malyshev A, Ierusalimsky VN, Spivak Y, Balaban PM, et al. Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons. Front Cell Neurosci. 2017;11:28.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ierusalimsky VN, Balaban PM, Nikitin ES. Nav1.6 but not KCa3.1 channels contribute to heterogeneity in coding abilities and dynamics of action potentials in the L5 neocortical pyramidal neurons. Biochem Biophys Res Commun. 2022;615:102–8.

    Article  CAS  PubMed  Google Scholar 

  37. Destexhe A, Rudolph M, Pare D. The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci. 2003;4:739–51.

    Article  CAS  PubMed  Google Scholar 

  38. Ilin V, Stevenson IH, Volgushev M. Injection of Fully-Defined Signal Mixtures: A Novel High-Throughput Tool to Study Neuronal Encoding and Computations. PLOS ONE. 2014;9:e109928.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Guo C, Peng J, Zhang Y, Li A, Li Y, Yuan J, et al. Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field. Scientific Rep. 2017;7:2846.

    Article  ADS  Google Scholar 

  40. Baker A, Kalmbach B, Morishima M, Kim J, Juavinett A, Li N, et al. Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences. J Neurosci. 2018;38:5441–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sahu G, Turner RW. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol. 2021;12:759707.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jenkins DP, Yu W, Brown BM, Lojkner LD, Wulff H. Development of a QPatch automated electrophysiology assay for identifying KCa3.1 inhibitors and activators. Assay Drug Dev Technol. 2013;11:551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kondgen H, Geisler C, Fusi S, Wang XJ, Luscher HR, Giugliano M. The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex. 2008;18:2086–97.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Higgs MH, Spain WJ. Conditional bursting enhances resonant firing in neocortical layer 2-3 pyramidal neurons. J Neurosci. 2009;29:1285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Proskurina EY, Chizhov AV, Zaitsev AV. Optogenetic Low-Frequency Stimulation of Principal Neurons, but Not Parvalbumin-Positive Interneurons, Prevents Generation of Ictal Discharges in Rodent Entorhinal Cortex in an In Vitro 4-Aminopyridine Model. Int J Mol Sci. 2022;24:195.

  46. Soboleva EB, Amakhin DV, Sinyak DS, Zaitsev AV. Modulation of seizure-like events by the small conductance and ATP-sensitive potassium ion channels. Biochem Biophys Res Commun. 2022;623:74–80.

    Article  CAS  PubMed  Google Scholar 

  47. Bernasconi N, Bernasconi A, Andermann F, Dubeau F, Feindel W, Reutens DC. Entorhinal cortex in temporal lobe epilepsy. A quantitative MRI study. 1999;52:1870.

    CAS  Google Scholar 

  48. Kuhn T, Gullett JM, Boutzoukas AE, Bohsali A, Mareci TH, FitzGerald DB, et al. Temporal lobe epilepsy affects spatial organization of entorhinal cortex connectivity. Epilepsy Behav. 2018;88:87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Proskurina EY, Zaitsev AV. Regulation of Potassium and Chloride Concentrations in Nervous Tissue as a Method of Anticonvulsant Therapy. J Evol Biochem Physiol. 2022;58:1275–92.

    Article  CAS  Google Scholar 

  50. Nikitin ES, Balaban PM, Zaitsev AV. Prospects for Gene Therapy of Epilepsy Using Calcium-Acivated Potassium Channel Vectors. J Evol Biochem Physiol. 2022;58:1065–74.

    Article  CAS  Google Scholar 

  51. Walker MC, Kullmann DM. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 2019;168:107751.

  52. Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron. 2017;95:504–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schiller Y. Activation of a calcium-activated cation current during epileptiform discharges and its possible role in sustaining seizure-like events in neocortical slices. J Neurophysiol. 2004;92:862–72.

    Article  CAS  PubMed  Google Scholar 

  54. Somarowthu A, Goff KM, Goldberg EM. Two-photon calcium imaging of seizures in awake, head-fixed mice. Cell Calcium. 2021;96:102380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nagarkatti N, Deshpande LS, DeLorenzo RJ. Development of the calcium plateau following status epilepticus: role of calcium in epileptogenesis. Expert Rev Neurother. 2009;9:813–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Powell KL, Cain SM, Snutch TP, O’Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol. 2014;77:729–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rajakulendran S, Hanna MG. The Role of Calcium Channels in Epilepsy. Cold Spring Harb Persp Med. 2016;6:a022723.

    Article  Google Scholar 

  58. Higham J, Sahu G, Wazen RM, Colarusso P, Gregorie A, Harvey BSJ, et al. Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca(2+)-Activated Potassium Channels. Mol Pharmacol. 2019;96:115–26.

    Article  CAS  PubMed  Google Scholar 

  59. Chen L, Cummings KA, Mau W, Zaki Y, Dong Z, Rabinowitz S, et al. The role of intrinsic excitability in the evolution of memory: Significance in memory allocation, consolidation, and updating. Neurobiol Learning Memory. 2020;173:107266.

    Article  Google Scholar 

  60. Ohno M, Sametsky EA, Silva AJ, Disterhoft JF. Differential effects of alphaCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability. Eur J Neurosci. 2006;23:2235–40.

    Article  PubMed  Google Scholar 

  61. Oh MM, Simkin D, Disterhoft JF. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits. Front Syst Neurosci. 2016;10:52.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Disterhoft JF, Oh MM. Alterations in intrinsic neuronal excitability during normal aging. Aging cell. 2007;6:327–36.

    Article  CAS  PubMed  Google Scholar 

  63. Disterhoft JF, Oh MM. Learning, aging and intrinsic neuronal plasticity. Trends Neurosci. 2006;29:587–99.

    Article  CAS  PubMed  Google Scholar 

  64. Tiwari MN, Mohan S, Biala Y, Yaari Y. Protein Kinase A-Mediated Suppression of the Slow Afterhyperpolarizing KCa3.1 Current in Temporal Lobe Epilepsy. J Neurosci. 2019;39:9914–26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by Russian Science Foundation; grant: RSF 20-15-00408. We would like to thank Dr. Alexander S. Chernyshev for his help in analyzing the field recordings.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ESN, VVB, PMB, and AVZ; Funding acquisition, PMB; ESN, MVR, TYP, VI, IK, AAB, EYP, MPS, and AVZ performed the experiments; Methodology, AAB, ESN, TYP, and AVZ; Project administration, ESN, PMB, and AVZ; Writing—original draft, ESN, TYP, EYP, and AVZ; Reviewing & editing, ESN, PMB, VVB, and AVZ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Evgeny S. Nikitin or Aleksey V. Zaitsev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, E.S., Postnikova, T.Y., Proskurina, E.Y. et al. Overexpression of KCNN4 channels in principal neurons produces an anti-seizure effect without reducing their coding ability. Gene Ther 31, 144–153 (2024). https://doi.org/10.1038/s41434-023-00427-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00427-9

Search

Quick links