Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of homology-directed DNA repair plays key role in CRISPR-mediated genome correction

Abstract

Gene editing for the cure of inborn errors of metabolism (IEMs) has been limited by inefficiency of adult hepatocyte targeting. Here, we demonstrate that in utero CRISPR/Cas9-mediated gene editing in a mouse model of hereditary tyrosinemia type 1 provides stable cure of the disease. Following this, we performed an extensive gene expression analysis to explore the inherent characteristics of fetal/neonatal hepatocytes that make them more susceptible to efficient gene editing than adult hepatocytes. We showed that fetal and neonatal livers are comprised of proliferative hepatocytes with abundant expression of genes involved in homology-directed repair (HDR) of DNA double-strand breaks (DSBs), key for efficient gene editing by CRISPR/Cas9. We demonstrated the same is true of hepatocytes after undergoing a regenerative stimulus (partial hepatectomy), where post-hepatectomy cells show a higher efficiency of HDR and correction. Specifically, we demonstrated that HDR-related genome correction is most effective in the replicative phase, or S-phase, of an actively proliferating cell. In conclusion, this study shows that taking advantage of or triggering cell proliferation, specifically DNA replication in S-phase, may serve as an important tool to improve efficiency of CRISPR/Cas9-mediated genome editing in the liver and provide a curative therapy for IEMs in both children and adults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AAV-HT and AAV-Cas9 administration to mice.
Fig. 2: Expression of HDR-related genes and efficiency of CRISPR/Cas9-mediated gene editing in fetal, neonatal, and adult hepatocytes.
Fig. 3: Cell cycle synchronization and efficiency of CRISPR/Cas9-mediated gene editing.
Fig. 4: Expression of HDR-related genes and efficiency of CRISPR/Cas9-mediated gene editing in adult hepatocytes before and after regenerative stimulus.

Similar content being viewed by others

Data availability

Sanger sequencing data is being uploaded to a public online repository and accession numbers will be provided. The remainder of data are available in the main text and supplementary materials.

References

  1. VanLith C, Guthman R, Nicolas CT, Allen K, Du Z, Joo DJ, et al. Curative ex vivo hepatocyte-directed gene editing in a mouse model of hereditary Tyrosinemia Type 1. Hum Gene Ther. 2018;29:1315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mingozzi F, High KA. Immune responses to AAV in clinical trials. Curr Gene Ther. 2011;11:321–30.

    Article  CAS  PubMed  Google Scholar 

  3. Mingozzi F, High KA. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood. 2013;122:23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tran ND, Porada CD, Almeida-Porada G, Glimp HA, Anderson WF, Zanjani ED. Induction of stable prenatal tolerance to beta-galactosidase by in utero gene transfer into preimmune sheep fetuses. Blood. 2001;97:3417–23.

    Article  CAS  PubMed  Google Scholar 

  5. Porada CD, Park PJ, Almeida-Porada G, Liu W, Ozturk F, Glimp HA, et al. Gestational age of recipient determines pattern and level of transgene expression following in utero retroviral gene transfer. Mol Ther. 2005;11:284–93.

    Article  CAS  PubMed  Google Scholar 

  6. Flake AW. Genetic therapies for the fetus. Clin Obstet Gynecol. 2002;45:684–96.

    Article  PubMed  Google Scholar 

  7. Alapati D, Zacharias WJ, Hartman HA, Rossidis AC, Stratigis JD, Ahn NJ, et al. In utero gene editing for monogenic lung disease. Sci Transl Med. 2019;11:eaav8375.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rossidis AC, Stratigis JD, Chadwick AC, Hartman HA, Ahn NJ, Li H, et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med. 2018;24:1513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lindblad B, Lindstedt S, Steen G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA. 1977;74:4641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Endo F, Sun MS. Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis. 2002;25:227–34.

    Article  CAS  PubMed  Google Scholar 

  11. Grompe M. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis. 2001;21:563–71.

    Article  CAS  PubMed  Google Scholar 

  12. Gilgenkrantz H. Rodent models of liver repopulation. Methods Mol Biol. 2010;640:475–90.

    Article  PubMed  Google Scholar 

  13. Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 2008;7:2902–6.

    Article  CAS  PubMed  Google Scholar 

  14. VanLith CJ, Guthman RM, Nicolas CT, Allen KL, Liu Y, Chilton JA, et al. Ex vivo hepatocyte reprograming promotes homology-directed DNA repair to correct metabolic disease in mice after transplantation. Hepatol Commun. 2019;3:558–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34:328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kreutz C, MacNelly S, Follo M, Waldin A, Binninger-Lacour P, Timmer J, et al. Hepatocyte ploidy is a diversity factor for liver homeostasis. Front Physiol. 2017;8:862.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen Y, Hata T, Rehman F, Kang L, Yang L, Kim BYS, et al. Visualization of hepatocellular regeneration in mice after partial hepatectomy. J Surg Res. 2019;235:494–500.

    Article  PubMed  Google Scholar 

  18. Tao Y, Wang M, Chen E, Tang H. Liver regeneration: Analysis of the main relevant signaling molecules. Mediators Inflamm. 2017;2017:4256352.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iyama T, Wilson DM 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). 2013;12:620–36.

    Article  CAS  PubMed  Google Scholar 

  20. Michalopoulos GK. Liver regeneration. J Cellular Physiol. 2007;213:286–300.

    Article  CAS  Google Scholar 

  21. Cerone R, Holme E, Schiaffino MC, Caruso U, Maritano L, Romano C. Tyrosinemia type III: Diagnosis and ten-year follow-up. Acta Paediatr. 1997;86:1013–5.

    Article  CAS  PubMed  Google Scholar 

  22. Ruetschi U, Cerone R, Perez-Cerda C, Schiaffino MC, Standing S, Ugarte M, et al. Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III. Hum Genet. 2000;106:654–62.

    Article  CAS  PubMed  Google Scholar 

  23. Chinsky JM, Singh R, Ficicioglu C, van Karnebeek CDM, Grompe M, Mitchell G, et al. Diagnosis and treatment of tyrosinemia type I: A US and Canadian consensus group review and recommendations. Genet Med. 2017;19:1380–95.

    Article  Google Scholar 

  24. Vermeulen C, Geeven G, de Wit E, Verstegen M, Jansen RPM, van Kranenburg M, et al. Sensitive monogenic noninvasive prenatal diagnosis by targeted haplotyping. Am J Hum Genet. 2017;101:326–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rafati M, Mohamadhashem F, Hoseini A, Ramandi SD, Ghaffari SR. Prenatal diagnosis of tyrosinemia type 1 using next generation sequencing. Fetal Pediatr Pathol. 2016;35:282–5.

    Article  CAS  PubMed  Google Scholar 

  26. David AL, Peebles D. Gene therapy for the fetus: Is there a future? Best Pract Res Clin Obstet Gynaecol. 2008;22:203–18.

    Article  PubMed  Google Scholar 

  27. Kim CH. Homeostatic and pathogenic extramedullary hematopoiesis. J Blood Med. 2010;1:13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci. 2016;152:244–8.

    Article  CAS  PubMed  Google Scholar 

  29. Krishnan A, Samtani R, Dhanantwari P, Lee E, Yamada S, Shiota K, et al. A detailed comparison of mouse and human cardiac development. Pediatr Res. 2014;76:500–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pressler R, Auvin S. Comparison of brain maturation among species: An example in translational research suggesting the possible use of bumetanide in newborn. Front Neurol. 2013;4:36.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li N, Gou S, Wang J, Zhang Q, Huang X, Xie J, et al. CRISPR/Cas9-mediated gene correction in newborn rabbits with hereditary tyrosinemia type I. Mol Ther. 2020;29:1001–15.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jackman J, O’Connor PM. Methods for synchronizing cells at specific stages of the cell cycle. Curr Protoc Cell Biol. 2001;Chapter 8:Unit 8.3.

  34. Thyagarajan B, Cruise JL, Campbell C. Elevated levels of homologous DNA recombination activity in the regenerating rat liver. Somat Cell Mol Genet. 1996;22:31–9.

    Article  CAS  PubMed  Google Scholar 

  35. Xiong W, MacColl Garfinkel AE, Li Y, Benowitz LI, Cepko CL. NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. J Clin Invest. 2015;125:1433–45.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grompe M, al-Dhalimy M, Finegold M, Ou CN, Burlingame T, Kennaway NG, et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 1993;7:2298–307.

    Article  CAS  PubMed  Google Scholar 

  38. Nijagal A, Le T, Wegorzewska M, Mackenzie TC. A mouse model of in utero transplantation. J Vis Exp. 2011;47:2303.

    Google Scholar 

  39. Waddington SN, Mitrophanous KA, Ellard FM, Buckley SM, Nivsarkar M, Lawrence L, et al. Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Ther. 2003;10:1234–40.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Montini E, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Kinetics of liver repopulation after bone marrow transplantation. Am J Pathol. 2002;161:565–74.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bae S, Park J, Kim JS. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30:1473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB, Strezoska Z, et al. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J Biotechnol. 2015;211:56–65.

    Article  CAS  PubMed  Google Scholar 

  43. Kalari KR, Nair AA, Bhavsar JD, O’Brien DR, Davila JI, Bockol MA, et al. MAP-RSeq: Mayo analysis pipeline for RNA sequencing. BMC Bioinformatics. 2014;15:224.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  45. Metsalu T, Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kari Allen for help with animal care. We thank Raymond Hickey for help with initial experiments. We thank LouAnn Gross and Tony Blahnik for histology and immunohistochemistry support. Children’s Hospital of Minnesota Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JBL, GM, and CTN. Methodology: JBL, GM, and CTN. Validation: RAK. Formal Analysis: CJV, GM, and DRO. Investigation: GM, CVL, and CTN. Resources: LH, WC, and BH. Writing-Original Draft: GM, CJV, CTN, and WST. Writing-Review & Editing: JBL and CTN. Visualization: CTN and JBL. Supervision: JBL and RAK. Project administration: RAK. Funding Acquisition: JBL.

Corresponding author

Correspondence to Joseph B. Lillegard.

Ethics declarations

Competing interests

JBL is Chief Scientific Officer and RAK is Vice-President of Pre-Clinical Development of Castle Creek Biosciences, Inc. No funding or financial support for this work has been provided by Castle Creek Biosciences. The remaining authors have no competing interests.

Ethical approval

All animal experiments conducted in this study were approved by Mayo Clinic’s Institutional Animal Care and Use Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, G., VanLith, C.J., Nicolas, C.T. et al. Activation of homology-directed DNA repair plays key role in CRISPR-mediated genome correction. Gene Ther 30, 386–397 (2023). https://doi.org/10.1038/s41434-022-00369-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00369-8

Search

Quick links