Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct functions of CAR-T cells possessing a dectin-1 intracellular signaling domain

Abstract

Chimeric antigen receptor T (CAR-T) cell therapy has demonstrated remarkable efficacies in treating hematopoietic malignancies, but not in the solid tumors. Incorporating costimulatory signaling domains, such as ICOS or 4-1BB, can positively influence CAR-T cell functions and then the immune responses. These CAR-engineered T cells have showed their enhanced persistence and effector functions with improved antitumor activities, and provided a new approach for the treatment of solid tumors. Here, we designed novel 2nd generation CARs with a costimulatory signaling molecule, dectin-1. The impacts of dectin-1 signaling domain on CAR-T cells were evaluated in vitro and in vivo. Our data show that in vitro cytokine secretions by HER2 or CD19 specific CAR-T cells increase significantly via incorporating this dectin-1 signaling domain. Additional properties of these novel CAR-T cells are affected by this costimulatory domain. Compared with a popular reference (i.e., anti-HER2 CAR-T cells with 4-1BB), in vitro T cell functions and in vivo antitumor activity of the dectin-1 engineered CAR-T cells are similar to the 4-1BB based, and both are discrete to the mock T cells. Furthermore, we found that the CAR-T cells with dectin-1 show distinct phenotype and exhaustion marker expression. These collective results suggest that the incorporation of this new signaling domain, dectin-1, into the CARs may provide the clinical potential of the CAR-T cells through this signaling domain in treating solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAR constructs and expression.
Fig. 2: In vitro cytokine production and cytotoxicity of the CAR-T cells.
Fig. 3: Phenotype, exhaustion marker expression, and CAR expression of the HER2 specific CAR-T cells.
Fig. 4: In vivo antitumor activity of the HER2 specific CAR-T cells.

Similar content being viewed by others

References

  1. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–9.

    Article  CAS  PubMed  Google Scholar 

  2. Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia. Chimeric Antigen Receptor-Modified T Cells for Acute Lymphoid Leukemia; Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2016;374:998.

    Article  Google Scholar 

  3. Elsallab M, Levine BL, Wayne AS, Abou-El-Enein M. CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncol. 2020;21:e104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Investig. 2019;129:2210–21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2019;380:1726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yan Z, Cao J, Cheng H, Qiao J, Zhang H, Wang Y, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 2019;6:e521–9.

    Article  PubMed  Google Scholar 

  7. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017;377:2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N Engl J Med. 2017;377:2545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019;20:31–42.

    Article  CAS  PubMed  Google Scholar 

  10. Yu S, Li A, Liu Q, Li T, Yuan X, Han X, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017;10:78.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Luo F, Yang J, Zhao C, Chu Y. New Chimeric Antigen Receptor Design for Solid Tumors. Front Immunol. 2017;8:1934.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173:7125–30.

    Article  CAS  PubMed  Google Scholar 

  13. Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med. 2019;25:947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zimara N, Chanyalew M, Aseffa A, van Zandbergen G, Lepenies B, Schmid M, et al. Dectin-1 Positive Dendritic Cells Expand after Infection with Leishmania major Parasites and Represent Promising Targets for Vaccine Development. Front Immunol. 2018;9:263.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R III, Kumamoto T, et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 2000;275:20157–67.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169:3876–82.

    Article  CAS  PubMed  Google Scholar 

  18. Adams EL, Rice PJ, Graves B, Ensley HE, Yu H, Brown GD, et al. Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J Pharmacol Exp Ther. 2008;325:115–23.

    Article  CAS  PubMed  Google Scholar 

  19. Kochenderfer JN, Feldman SA, Zhao Y, Xu H, Black MA, Morgan RA, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother. 2009;32:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119:2709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proceed Natl Acad Sci USA. 1992;89:4285–9.

    Article  CAS  Google Scholar 

  22. Huang Y, Li D, Zhang PF, Liu M, Liang X, Yang X, et al. IL-18R-dependent and independent pathways account for IL-18-enhanced antitumor ability of CAR-T cells. FASEB J. 2020;34:1768–82.

    Article  CAS  PubMed  Google Scholar 

  23. Cerignoli F, Abassi YA, Lamarche BJ, Guenther G, Santa Ana D, Guimet D, et al. In vitro immunotherapy potency assays using real-time cell analysis. PloS ONE. 2018;13:e0193498.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9:465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, et al. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther. 2019;4:35.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ying Z, He T, Wang X, Zheng W, Lin N, Tu M, et al. Parallel Comparison of 4-1BB or CD28 Co-stimulated CD19-Targeted CAR-T Cells for B Cell Non-Hodgkin’s Lymphoma. Mol Ther Oncolytics. 2019;15:60–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li S, Tao Z, Xu Y, Liu J, An N, Wang Y, et al. CD33-Specific Chimeric Antigen Receptor T Cells with Different Co-Stimulators Showed Potent Anti-Leukemia Efficacy and Different Phenotype. Human Gene Ther. 2018;29:626–39.

    Article  CAS  Google Scholar 

  28. Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget. 2017;8:90521–31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zolov SN, Rietberg SP, Bonifant CL. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells. Cytotherapy. 2018;20:1259–66.

    Article  CAS  PubMed  Google Scholar 

  31. Li G, Boucher JC, Kotani H, Park K, Zhang Y, Shrestha B, et al. 4-1BB enhancement of CAR T function requires NF-kappaB and TRAFs. JCI Insight. 2018;3:e121322.

  32. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66:10995–1004.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang JP, Zhang R, Tsao ST, Liu YC, Chen X, Lu DP, et al. Sequential allogeneic and autologous CAR-T-cell therapy to treat an immune-compromised leukemic patient. Blood Adv. 2018;2:1691–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hombach AA, Heiders J, Foppe M, Chmielewski M, Abken H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology. 2012;1:458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen CJ, Yang YX, Han EQ, Cao N, Wang YF, Wang Y, et al. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J Hematol Oncol. 2013;6:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lonez C, Verma B, Hendlisz A, Aftimos P, Awada A, Van Den Neste E, et al. Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open. 2017;7:e017075.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nair S, Wang JB, Tsao ST, Liu Y, Zhu W, Slayton WB, et al. Functional Improvement of Chimeric Antigen Receptor Through Intrinsic Interleukin-15Ralpha Signaling. Curr Gene Ther. 2019;19:40–53.

  38. Mata M, Gerken C, Nguyen P, Krenciute G, Spencer DM, Gottschalk S. Inducible Activation of MyD88 and CD40 in CAR T Cells Results in Controllable and Potent Antitumor Activity in Preclinical Solid Tumor Models. Cancer Discov. 2017;7:1306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai Y, Weng J, Wei X, Qin L, Lai P, Zhao R, et al. Toll-like receptor 2 costimulation potentiates the antitumor efficacy of CAR T Cells. Leukemia. 2018;32:801–8.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng Z, Wei R, Ma Q, Shi L, He F, Shi Z, et al. In Vivo Expansion and Antitumor Activity of Coinfused CD28- and 4-1BB-Engineered CAR-T Cells in Patients with B Cell Leukemia. Mol Ther. 2018;26:976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang CC, Wang Z, Yang Z, Wang ML, Li SQ, Li YY, et al. Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA(+) Metastatic Colorectal Cancers. Mol Ther. 2017;25:1248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J Clin Oncol. 2015;33:1688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N Engl J Med. 2015;373:1040–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei G, Ding L, Wang J, Hu Y, Huang H. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6:10.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sadelain M, Riviere I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545:423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18:374–89.

    Article  CAS  PubMed  Google Scholar 

  47. Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H, Mi T, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proceed Natl Acad Sci USA. 2014;111:10660–5.

    Article  CAS  Google Scholar 

  48. Brown GD, Crocker PR. Lectin Receptors Expressed on Myeloid Cells. Microbiol Spectr. 2016;4:5.

    Article  Google Scholar 

  49. Chiba S, Ikushima H, Ueki H, Yanai H, Kimura Y, Hangai S, et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife. 2014;3:e04177.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kaisar MMM, Ritter M, Del Fresno C, Jonasdottir HS, van der Ham AJ, Pelgrom LR, et al. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol. 2018;16:e2005504.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nature Commun. 2016;7:12368.

    Article  CAS  Google Scholar 

  52. Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–28.

    Article  CAS  PubMed  Google Scholar 

  53. Mardiana S, John LB, Henderson MA, Slaney CY, von Scheidt B, Giuffrida L, et al. A Multifunctional Role for Adjuvant Anti-4-1BB Therapy in Augmenting Antitumor Response by Chimeric Antigen Receptor T Cells. Cancer Res. 2017;77:1296–309.

    Article  CAS  PubMed  Google Scholar 

  54. Chacon JA, Wu RC, Sukhumalchandra P, Molldrem JJ, Sarnaik A, Pilon-Thomas S, et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PloS ONE. 2013;8:e60031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abken H. Driving CARs on the Highway to Solid Cancer: some Considerations on the Adoptive Therapy with CAR T Cells. Human Gene Ther. 2017;28:1047–60.

    Article  CAS  Google Scholar 

  56. Bagley SJ, O’Rourke DM. Clinical investigation of CAR T cells for solid tumors: Lessons learned and future directions. Pharmacol Ther. 2020;205:107419.

  57. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proceed Natl Acad Sci USA. 2005;102:9571–6.

    Article  CAS  Google Scholar 

  58. Ma Q, Gomes EM, Lo AS, Junghans RP. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate. 2014;74:286–96.

    Article  CAS  PubMed  Google Scholar 

  59. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112:2261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119:3940–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sanchez-Perez L, et al. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity. 2011;35:972–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang PF, Huang Y, Liang X, Li D, Jiang L, Yang X, et al. Enhancement of the antitumor effect of HER2-directed CAR-T cells through blocking epithelial-mesenchymal transition in tumor cells. FASEB J. 2020;34:11185–99.

    Article  CAS  PubMed  Google Scholar 

  63. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17:1290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2016YFC1303403), the National Natural and Scientific Foundation of China 81972878, 81572981, 81672397 and 81703057, the National High-tech R&D program (863 Program) 2014AA020704, the Key Scientific and Technological Foundation in Sichuan Province, 17ZDZX0037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

WW has submitted a patent concerning the methodology and application. WW is one of the scientific co-founders of Cygenpeutics and CarEne and holds the equity of the company. The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Huang, Y., Li, D. et al. Distinct functions of CAR-T cells possessing a dectin-1 intracellular signaling domain. Gene Ther 30, 411–420 (2023). https://doi.org/10.1038/s41434-021-00257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00257-7

Search

Quick links