Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge

Abstract

Clostridium difficile is the leading cause of antibiotic-associated nosocomial diarrhea in the developed world. When the host-associated colon microbiome is disrupted by the ingestion of antibiotics, C. difficile spores can germinate, resulting in infection. C. difficile secretes enterotoxin A (TcdA) and cytotoxin B (TcdB) that are responsible for disease pathology. Treatment options are limited as the bacterium demonstrates resistance to many antibiotics, and even with antibacterial therapies, recurrences of C. difficile are common. Actotoxumab and bezlotoxumab are human monoclonal antibodies that bind and neutralize TcdA and TcdB, respectively. In 2016, the US food and drug administration (FDA) approved bezlotoxumab for use in the prevention of C. difficile infection recurrence. To ensure the long-term expression of antibodies, gene therapy can be used. Here, adeno-associated virus (AAV)6.2FF, a novel triple mutant of AAV6, was engineered to express either actotoxumab or bezlotoxumab in mice and hamsters. Both antibodies expressed at greater than 90 μg/mL in the serum and were detected at mucosal surfaces in both models. Hundred percent of mice given AAV6.2FF-actoxumab survived a lethal dose of TcdA. This proof of concept study demonstrates that AAV-mediated expression of C. difficile toxin antibodies is a viable approach for the prevention of recurrent C. difficile infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Actoxumab and Bezlotoxumab serum expression.
Fig. 2: Actoxumab and bezlotoxumab mucosal surface expression.
Fig. 3: Toxin binding activity of AAV-expressed actoxumab and bezlotoxumab in serum.
Fig. 4: Bezlotoxumab serum and mucosal surface expression in Syrian hamsters.
Fig. 5: AAV6.2FF-mediated expression of actoxumab extends survival in the murine TcdA challenge model.
Fig. 6: AAV6.2FF-mediated expression of bezlotoxumab does not extend survival in the murine TcdB challenge model.

Similar content being viewed by others

References

  1. Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med. 2015;373:287–8.

    CAS  PubMed  Google Scholar 

  2. Balsells E, Shi T, Leese C, Lyell I, Burrows J, Wiuff C, et al. Global burden of Clostridium difficile infections: a systematic review and meta-analysis. J Glob Health. 2019;9:010407.

    Article  PubMed  Google Scholar 

  3. Guh AY, Mu Y, Winston LG, Johnston H, Olson D, Farley MM, et al. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N Engl J Med. 2020;382:1320–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med. 2013;173:2039–46.

    Article  PubMed  Google Scholar 

  5. Duhalde L, Lurienne L, Wingen-Heimann SM, Guillou L, Buffet R, Bandinelli PA. The economic burden of Clostridioides difficile infection in patients with hematological malignancies in the United States: a case-control study. Infect Control Hosp Epidemiol. 2020;41:813–9.

    Article  PubMed  Google Scholar 

  6. Chopra T, Goldstein EJ. Clostridium difficile infection in long-term care facilities: a call to action for antimicrobial stewardship. Clin Infect Dis. 2015;60:S72–76.

    Article  PubMed  Google Scholar 

  7. Marshall LL, Peasah S, Stevens GA. Clostridium difficile infection in older adults: systematic review of efforts to reduce occurrence and improve outcomes. Consult Pharm. 2017;32:24–41.

    Article  PubMed  Google Scholar 

  8. De Roo AC, Regenbogen SE. Clostridium difficile Infection: an epidemiology update. Clin Colon Rectal Surg. 2020;33:49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stebel R, Vojtilová L, Husa P. Clostridium difficile infection: an update on treatment and prevention. Vnitr Lek. 2020;66:58–62.

    Article  PubMed  Google Scholar 

  10. Schäffler H, Breitrück A. Clostridium difficile—from colonization to infection. Front Microbiol. 2018;9:646.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, di Masi A. Clostridium difficile toxins A and B: insights into pathogenic properties and extraintestinal effects. Toxins. 2016;8:134.

    Article  PubMed  PubMed Central  Google Scholar 

  12. von Eichel-Streiber C, Boquet P, Sauerborn M, Thelestam M. Large clostridial cytotoxins-a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol. 1996;4:375–82.

    Article  Google Scholar 

  13. Sun X, Savidge T, Feng H. The enterotoxicity of Clostridium difficile toxins. Toxins. 2010;2:1848–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995;375:500–3.

    Article  CAS  PubMed  Google Scholar 

  15. Just I, Wilm M, Selzer J, J, Rex G, von Eichel-Streiber C, Mann M, et al. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem. 1995;270:13932–6.

    Article  CAS  PubMed  Google Scholar 

  16. Gateau C, Couturier J, Coia J, Barbut F. How to: diagnose infection caused by Clostridium difficile. Clin Microbiol Infect. 2018;24:463–8.

    Article  CAS  PubMed  Google Scholar 

  17. Peng Z, Ling L, Stratton CW, Li C, Polage CR, Wu B, et al. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg Microbes Infect. 2018;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Curry SR, Marsh JW, Shutt KA, Muto CA, O’Leary MM, Saul MI, et al. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis. 2009;48:425–9.

    Article  CAS  PubMed  Google Scholar 

  19. Dieterle MG, Rao K, Young VB. Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections. Ann N Y Acad Sci. 2019;1435:110–38.

    Article  PubMed  Google Scholar 

  20. Deshpande A, Pasupuleti V, Thota P, Pant C, Rolston DD, Hernandez AV, et al. Risk factors for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2015;36:452–60.

    Article  PubMed  Google Scholar 

  21. Rineh A, Kelso MJ, Vatansever F, Tegos GP, Hamblin MR. Clostridium difficile infection: molecular pathogenesis and novel therapeutics. Expert Rev Anti Infect Ther. 2014;12:131–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bojanova DP, Bordenstein SR. Fecal transplants: what is being transferred? PLoS Biol. 2016;14:e1002503.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Daniels LM, Kufel WD. Clinical review of Clostridium difficile infection: an update on treatment and prevention. Expert Opin Pharmacother. 2018;19:1759–69.

    Article  CAS  PubMed  Google Scholar 

  24. Merrick B, Allen L, Zain NMM, Forbes B, Shawcross DL, Goldenberg SD. Regulation, risk and safety of faecal microbiota transplant. Infect Prev Pract. 2020;2:100069.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Giau VV, Lee H, An SSA, Hulme J. Recent advances in the treatment of. Infect Drug Resist. 2019;12:1597–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mounsey A, Lacy Smith K, Reddy VC, Nickolich S. Clostridioides difficile Infection: update on management. Am Fam Physician. 2020;101:168–75.

    PubMed  Google Scholar 

  27. Yang Z, Ramsey J, Hamza, Zhang Y, Li S, Yfantis HG, et al. Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab. Infect Immunol. 2015;83:822–31.

    Article  Google Scholar 

  28. Bézay N, Ayad A, Dubischar K, Firbas C, Hochreiter R, Kiermayr S, et al. Safety, immunogenicity and dose response of VLA84, a new vaccine candidate against Clostridium difficile, in healthy volunteers. Vaccine. 2016;34:2585–92.

    Article  PubMed  Google Scholar 

  29. de Bruyn G, Saleh J, Workman D, Pollak R, Elinoff V, Fraser NJ, et al. Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: a randomized Phase 2 clinical trial. Vaccine. 2016;34:2170–8.

    Article  PubMed  Google Scholar 

  30. CDVAX. Progress 2018. Available from: http://cdvax.org/progress/.

  31. Babcock GJ, Broering TJ, Hernandez HJ, Mandell RB, Donahue K, Boatright N, et al. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect Immun. 2006;74:6339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Steele J, Mukherjee J, Parry N, Tzipori S. Antibody against TcdB, but not TcdA, prevents development of gastrointestinal and systemic Clostridium difficile disease. J Infect Dis. 2013;207:323–30.

    Article  CAS  PubMed  Google Scholar 

  33. Corthier G, Muller MC, Wilkins TD, Lyerly D, L’Haridon R. Protection against experimental pseudomembranous colitis in gnotobiotic mice by use of monoclonal antibodies against Clostridium difficile toxin A. Infect Immunol. 1991;59:1192–5.

    Article  CAS  Google Scholar 

  34. Markham A. Bezlotoxumab: first global approval. Drugs. 2016;76:1793–8.

    Article  CAS  PubMed  Google Scholar 

  35. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2012;481:81–84.

    Article  CAS  Google Scholar 

  36. Zincarelli C, Soltys S, Rengo G, Rabinowitz J. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16:1073–80.

    Article  CAS  PubMed  Google Scholar 

  37. van Lieshout LP, Domm JM, Rindler TN, Frost KL, Sorensen DL, Medina SJ. A novel triple-mutant AAV6 capsid induces rapid and potent transgene expression in the muscle and respiratory tract of mice. Mol Ther Methods Clin Dev. 2018;9:323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, et al. Intramuscular adeno-associated virus-mediated expression of monoclonal antibodies provides 100% protection against ebola virus infection in mice. J Infect Dis. 2018;217:916–25.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Halbert C, Allen J, Miller A. Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol. 2002;20:697–701.

    Article  CAS  PubMed  Google Scholar 

  40. van Lieshout LP, Domm JM, Wootton SK. AAV-mediated gene delivery to the lung. Methods Mol Biol. 2019;1950:361–72.

    Article  PubMed  Google Scholar 

  41. Gardner MR, Fetzer I, Kattenhorn LM, Davis-Gardner ME, Zhou AS, Alfant B, et al. Anti-drug antibody responses impair prophylaxis mediated by AAV-delivered HIV-1 broadly neutralizing antibodies. Mol Ther. 2019;27:650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van den Berg FT, Makoah NA, Ali SA, Scott TA, Mapengo RE, Mutsvunguma LZ, et al. AAV-mediated expression of broadly neutralizing and vaccine-like antibodies targeting the HIV-1 envelope V2 region. Mol Ther Methods Clin Dev. 2019;14:100–12.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Best EL, Freeman J, Wilcox MH. Models for the study of Clostridium difficile infection. Gut Microbes. 2012;3:145–67.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, Zimring J, et al. Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs. 2017;9:767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He X, Sun X, Wang J, Wang X, Zhang Q, Tzipori S, et al. Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A. Infect Immunol. 2009;77:2294–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all those involved in the care of the animals for these studies at all institutions.

Funding

This research was funded by NSERC Discovery Grant number RGPIN-2018-04737. BAYS and ADR are both recipients of an OVC Scholarship and an Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah K. Wootton.

Ethics declarations

Conflict of interest

LPvL and SKW are inventors on a US patent for the AAV6.2FF capsid. This patent (US20190216949) is licensed to Avamab Pharma Inc., where BT and SKW are co-founders and BT serves as an executive.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilleman, M.M., Stevens, B.A.Y., Van Lieshout, L.P. et al. AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge. Gene Ther 30, 455–462 (2023). https://doi.org/10.1038/s41434-021-00236-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00236-y

This article is cited by

Search

Quick links