Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy

Abstract

Duchenne muscular dystrophy (DMD) is one of the most common lethal muscle-wasting disorders affecting young boys caused by mutations in the DMD gene. Exon skipping has emerged as a promising therapy for DMD. Antisense oligonucleotides (AONs) are designed to induce the skipping of exon(s), in order to restore the reading frame, and therefore, allow for dystrophin expression. Eteplirsen and golodirsen, AONs for DMD exons 51 and 53 skipping, have been recently approved by the FDA. Viltolarsen, an AON for DMD exon 53 skipping, was approved in Japan earlier this year. Although promising, the efficacy of eteplirsen and AON sequence employed remain controversial. In addition, exon skipping faces challenges including the applicability and delivery. This article reviews and discusses exon skipping and the current advances being made in the field, on drugs, multi-exon skipping, sequence design, and applicability. We also discuss challenges and future directions that will facilitate the development of exon skipping therapy.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Illustration of the mechanism of exon skipping therapy, restoring dystrophin expression by the skipping of exon 52.
Fig. 2: Comparison of AONs for skipping of exons 51 and 53 in the DMD.

References

  1. Moat SJ, Bradley DM, Salmon R, Clarke A, Hartley L. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013;21:1049–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakamura A, Takeda S. Mammalian models of Duchenne muscular dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol. 2011;2011:1–9.

    Google Scholar 

  3. Roberts RG, Coffey AJ, Bobrow M, Bentley DR. Exon structure of the human dystrophin gene. Genomics. 1993;2:536–8.

    Google Scholar 

  4. Juan-Mateu J, Gonzalez-Quereda L, Rodriguez MJ, Baena M, Verdura E, Nascimento A, et al. DMD mutations in dystrophinopathy families: a step forward in genotype-phenotype correlations. PLoS One. 2015;10:1–21.

    Google Scholar 

  5. Okubo M, Goto K, Komaki H, Nakamura H, Mori-Yoshimura M, Hayashi YK, et al. Comprehensive analysis for genetic diagnosis of dystrophinopathies in Japan. Orphanet J Rare Dis. 2017;12:1–7.

    Google Scholar 

  6. Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2:731–40.

    CAS  PubMed  Google Scholar 

  7. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;1:90–95.

    Google Scholar 

  8. Gao Q, McNally EM. The dystrophin complex: structure, function and implications for therapy. Compr Physiol. 2016;5:1223–39.

    Google Scholar 

  9. Uchino M, Teramoto H, Naoe H, Yoshioka K, Miike T, Ando M. Localization and characterization of dystrophin in the central nervous system of controls and patients with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry. 1994;57:426–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell KP. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995;80:675–9.

    CAS  PubMed  Google Scholar 

  11. Wagner KR, Lechtzin N, Judge DP. Current treatment of adult Duchenne muscular dystrophy. Biochimica et Biophys Acta. 1772;2007:229–37.

    Google Scholar 

  12. Backman E, Henriksson KG. Low-dose prednisolone treatment in Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 1995;5:233–41.

    CAS  PubMed  Google Scholar 

  13. Biggar WD, Gingras M, Fehlings DL, Harris VA, Steele CA. Deflazacort treatment of Duchenne muscular dystrophy. J Pediatrics. 2001;138:45–50.

    CAS  Google Scholar 

  14. Drachman DB, Toyka KV, Myer E. Prednisone in Duchenne muscular dystrophy. Lancet. 1974;304:1409–12.

    Google Scholar 

  15. Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008;1:1–33.

    Google Scholar 

  16. Nakamura A, Takeda S. Exon-skipping therapy for Duchenne muscular dystrophy. Neuropathology. 2009;29:494–501.

    PubMed  Google Scholar 

  17. Heemskerk H, Winter CL, Ommen GJB, Deutekom JCT, Aartsma-Rus A. Development of antisense-mediated exon skipping as a treatment for Duchenne muscular dystrophy. Oligonucleotide Therap. 2009;1175:71–79.

    CAS  Google Scholar 

  18. Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, Dunnen JTD, Baas F, et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet. 2003;12:907–14.

    CAS  PubMed  Google Scholar 

  19. Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol. 2009;65:667–76.

    PubMed  PubMed Central  Google Scholar 

  20. Mann CJ, Honeyman K, McClorey G, Fletcher S, Wilton SD. Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy. J Gene Med. 2002;4:644–54.

    CAS  PubMed  Google Scholar 

  21. Guncay A, Yokota T. Antisense oligonucleotide drugs for Duchenne muscuklar dystrophy: how far have we come and what does the future hold. Future Med Chem. 2015;7:1631–5.

    CAS  PubMed  Google Scholar 

  22. Flanigan KM, Dunn DM, von Niederhausern A, Soltanzadeh P, Gappmaier E, Howard MT, et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009;30:1657–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Syed YY. Eteplirsen: first global approval. Drugs. 2016;76:1699–704.

    CAS  PubMed  Google Scholar 

  24. Lim KRQ, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Dev Ther. 2017;11:533–45.

    CAS  Google Scholar 

  25. U.S National Library of Medicine. Study of SRP-4045 and SRP-4053 in DMD Patients (ESSENCE). 2019. https://clinicaltrials.gov/ct2/show/NCT02500381.

  26. Nippon Shinyaku Co. LTD. Marketing authorization in Japan of VILTEPSO intravenous infusion 250 mg for the treatment of Duchenne muscular dystrophy. 2020. https://www.nippon-shinyaku.co.jp.

  27. Komaki H, Takeshima Y, Matsumura T, Ozasa S, Funato M, Egawa Y, et al. (n.d.). A Japanese Phase I/II study of NS-065/NCNP-01 (Viltolarsen), Exon 52 skipping drug, in patients with Duchenne muscular dystrophy—a dose-finding study. Mendoza: Poster presented at the 23rd International Annual Congress of the World Muscle Society; 2018.

  28. Yokota T, Duddy W, Echigoya Y, Kolski H. Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther. 2012;12:1141–52.

    CAS  PubMed  Google Scholar 

  29. Wood MJA, Gait MJ, Yin H. RNA-targeted splice-correction therapy for neuromuscular disease. Brain. 2010;133:957–72.

    PubMed  Google Scholar 

  30. Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Therap. 2014;24:69–86.

    CAS  Google Scholar 

  31. Wilton SD, Fall AM, Harding PL, McClorey G, Coleman C, Fletcher S. Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript. Mol Ther. 2007;15:1288–96.

    CAS  PubMed  Google Scholar 

  32. Dominski A, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl Acad Sci. 1993;90:8673–7.

    CAS  PubMed  Google Scholar 

  33. Slijkerman RW, Vache C, Dona M, Garcia-Garcia G, Claustres M, Hetterschijt L, et al. Antisense oligonucleotide-based splice correction for ush2a-associated retinal degeneration caused by a frequent deepintronic mutation. Mol Ther Nucleic Acids. 2016;5:1–10.

    Google Scholar 

  34. Taylor J, Zhang Q, Wyatt J, Dean NM. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol. 1999;17:1097–1100.

    CAS  PubMed  Google Scholar 

  35. Arthur GK, Cruse G. Exon skipping of FcεRIβ for allergic diseases. Methods Mol Biol. 2018;1828:503–18.

    CAS  PubMed  Google Scholar 

  36. Rigo F, Hua Y, Krainer AR, Bennett CF. Antisense-based therapy for the treatment of spinal muscular atrophy. J Cell Biol. 2012;199:21–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Aartsma-Rus A, Singh K, Fokkema IFAC, Ginjaar LB, Ommen GJV, Dunnen JTV. et al. Therapeutic exon skipping for dysferlinopathies?. Eur J Hum Genet. 2010;18:889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Summerton JE. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Topics Med Chem. 2007;7:651–60.

    CAS  Google Scholar 

  39. Heemskerk H, Winter C, Kuik P, Heuvelmans N, Sabatelli P, Rimessi P, et al. Preclinical PK and PD studies on 2′-O-Methyl-phosphorothioate RNA Antisense Oligonucleotides in the mdx Mouse Model. Mol Ther. 2010;18:1210–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kole R, Krieg AM. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev. 2015;87:104–7.

    CAS  PubMed  Google Scholar 

  41. Hilhorst N, Spanoudi-Kitrimi I, Goemans N, Morren MA. Injection site reactions after long-term subcutaneous delivery of drisapersen: a retrospective study. Eur J Pediatrics. 2019;178:253–8.

    CAS  Google Scholar 

  42. Kesselheim AS, Avorn J. Approving a problematic muscular dystrophy drug: implications for FDA policy. JAMA. 2016;316:2357–8.

    PubMed  Google Scholar 

  43. Yokota T, Duddy W, Partridge T. Optimizing exon skipping therapies for DMD. Acta Myol. 2007;26:179–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med. 2006;12:175–7.

    CAS  PubMed  Google Scholar 

  45. Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol. 2005;5:550–5.

    CAS  PubMed  Google Scholar 

  46. Gebski BL, Mann CJ, Fletcher S, Wilton SD. Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet. 2003;12:1801–11.

    CAS  PubMed  Google Scholar 

  47. Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci. 2004;27:85–131.

    CAS  PubMed  Google Scholar 

  48. Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8:1972–94.

    CAS  PubMed  Google Scholar 

  49. Blain AM, Greally E, McClorey G, Manzano R, Betts CA, Godfrey C, et al. Peptide-conjugated phosphodiamidate oligomer-mediated exon skipping has benefits for cardiac function in mdx and Cmah-/-mdx mouse models of Duchenne muscular dystrophy. PLoS ONE. 2018;13:1–22.

    Google Scholar 

  50. Echigoya Y, Nakamura A, Nagata T, Urasawa N, Lim KRQ, Trieu N. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. PNAS. 2017;114:4213–8.

    CAS  PubMed  Google Scholar 

  51. Wu B, Lu P, Cloer C, Shaban M, Grewal S, Milazi S, et al. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino. Am J Pathol. 2012;181:392–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li YF, Marcos PA. Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo. Bioconjugate Chem. 2008;19:1464–70.

    CAS  Google Scholar 

  53. U.S National Library of Medicine. A phase 2 study for dose determination of SRP-5051, then dose expansion in patients with Duchenne muscular dystrophy amenable to exon 51-skipping treatment. 2019. https://clinicaltrials.gov/ct2/show/NCT04004065.

  54. Kang JK, Malerba A, Popplewell L, Foster K, Dickson G. Antisense-induced myostatin exon skipping leads to muscle hypertrophy in mice following octa-guanidine morpholino oligomer treatment. Mol Ther. 2010;19:159–64.

    PubMed  PubMed Central  Google Scholar 

  55. Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL. Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther. 2009;17:864–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cirak S, Arechavala-Gomza V, Guglieri M, Feng L, Torelli S, Anthony K, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378:595–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K, Avril A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Na Med. 2015;21:270–5.

    CAS  Google Scholar 

  58. Echevarría L, Aupy P, Relizani K, Bestetti T, Griffith G, Blandel F, et al. Evaluating the impact of variable phosphorothioate content in tricyclo-dna antisense oligonucleotides in a duchenne muscular dystrophy mouse model. Nucl Acid Ther. 2019;29:148–60.

    Google Scholar 

  59. U.S Food and Drug Administration. FDA grants accelerated approval to first targeted treatment for rare Duchenne muscular dystrophy mutation. 2019. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation.

  60. Echigoya Y, Lim KRQ, Trieu N, Bao B, Miskew Nichols B, Vila M, et al. Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy. Mol Ther. 2017;25:2561–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Aoki Y, Nakamura A, Yokota T, Saito T, Okazawa H, Nagata T, et al. In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther. 2010;18:1995–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol. 2016;79:257–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Refusal of marketing authorization for Exondys (eteplirsen). Eur Med Agency. 2018;1:1–2.

  64. Muntoni F, Frank D, Sardone V, Morgan J, Schnell F, Charleston J, et al. Golodirsen induces exon skipping leading to Sarcolemmal dystrophin expression in Duchenne muscular dystrophy patients with mutations amenable to exon 53 skipping. Neurology. 2018;90:S22.001.

    Google Scholar 

  65. U.S. National Library of Medicine. Phase I/II study of SRP-4053 in DMD patients. 2019. https://clinicaltrials.gov/ct2/show/NCT02310906.

  66. Watanabe N, Nagata T, Satou Y, Masuda S, Saito T, Kitagawa H, et al. NS-065/NCNP-01: an antisense oligonucleotide for potential treatment of exon 53 skipping in Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 2018;13:442–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Echigoya Y, Mouly V, Garcia L, Yokota T, Duddy W. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in duchenne muscular dystrophy. PLoS ONE. 2015;10:1–24.

    Google Scholar 

  68. Komaki H, Nagata T, Saito T, Masuda S, Takeshita E, Sasaki M, et al. Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Sci Transl Med. 2018;10:1–11.

    Google Scholar 

  69. Clemens P, Rao V, Connolly A, Harper A, Mah J, Smith E, et al. A phase II, dose finding study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of NS-065/NCNP-01 (Viltolarsen) in boys with Duchenne muscular dystrophy (DMD). Mendoza: Poster presented at the 23rd International Annual Congress of the World Muscle Society; 2018.

  70. Fall AM, Johnsen R, Honeyman K, Iversen P, Fletcher S, Wilton SD. Induction of revertant fibres in the mdx mouse using antisense oligonucleotides. Genetic Vaccines Ther. 2006;4:1–12.

    Google Scholar 

  71. Nichols BM, Aoki Y, Kuraoka M, Lee JJA, Takeda S, Yokota T. Multi-exon skipping using cocktail antisense oligonucleotides in the Canine X-linked muscular dystrophy. J Vis Exp. 2016;111:1–15.

    Google Scholar 

  72. Echigoya Y, Lim KRQ, Melo D, Bao B, Trieu N, Mizobe Y, et al. Exons 45–55 skipping using mutation-tailored cocktails of antisense morpholinos in the DMD gene. Mol Ther. 2019;27:2005–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yazaki M, Yoshida K, Nakamura A, Koyama J, Nanba T, Ohori N, et al. Clinical characteristics of aged Becker muscular dystrophy patients with onset after 30 years. Eur Neurol. 1999;42:145–9.

    CAS  PubMed  Google Scholar 

  74. Echigoya Y, Aoki Y, Miskew B, Panesar D, Touznik A, Nagata T, et al. Long-term efficacy of systemic multiexon skipping targeting Dystrophin exons 45–55 with a cocktail of vivo-morpholinos in Mdx52 Mice. Mol Ther Nucleic Acids. 2015;4:1–10.

    Google Scholar 

  75. Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J, Saito T, et al. Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. PNAS. 2012;109:13763–8.

    CAS  PubMed  Google Scholar 

  76. Yokota T, Takeda S, Lu QL, Partridge TA, Nakamura A, Hoffman EP. A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol. 2009;66:32–38.

    PubMed  PubMed Central  Google Scholar 

  77. Aartsma-Rus A, Van Vliet L, Hirschi M, Janson AAM, Heemskerk H, Winter CLD, et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther. 2009;17:548–53.

    CAS  PubMed  Google Scholar 

  78. Popplewell LJ, Trollet C, Dickson G, Graham IR. Design of phosphorodiamidate morpholino oligomers (PMOs) for the induction of exon skipping of the human DMD gene. Mol Ther. 2009;17:554–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Harding PL, Fall AM, Honeyman K, Fletcher S, Wilton SD. The influence of antisense oligonucleotide length on dystrophin exon skipping. Mol Ther. 2017;15:157–66.

    Google Scholar 

  80. Nguyen Q, Yokota T. Immortalized muscle cell model to test the exon skipping efficacy for Duchenne muscular dystrophy. J Pers Med. 2017;7:1–9.

    Google Scholar 

  81. Shimo T, Tachibana K, Saito K, Yoshida T, Tomita E, Waki R, et al. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acid Res. 2014;42:8174–87.

    Google Scholar 

  82. Mamchaoui K, Trollet C, Bigot A, Negroni E, Chaouch S, Wolff A, et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle. 2011;1:1–10.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Muscular Dystrophy Canada, the Friends of Garrett Cumming Research Fund, the HM Toupin Neurological Science Research Fund, Canadian Institutes of Health Research (CIHR), Alberta Innovates: Health Solutions (AIHS), Jesse’s Journey, Canada Foundation for Innovation (CFI), Alberta Advanced Education and Technology, and the Women and Children’s Health Research Institute (WCHRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dzierlega, K., Yokota, T. Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy. Gene Ther 27, 407–416 (2020). https://doi.org/10.1038/s41434-020-0156-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0156-6

Further reading

Search

Quick links